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Chapter 1

Measures

Definition 1.1 (Measure). Let X be a set and M be a σ-algebra over X. A
measure on M is a function µ : M → [0,∞] satisfying

1. µ({}) = 0

2. If {Ej}∞1 is a countable sequence of disjoint sets in M, then µ
(⋃∞

j=1Ej

)
=∑∞

j=1 µ(Ej).

If µ does not satisfy countable additivity, but does satisfy finite additivity, then
µ is a finitely additive measure.

1.1 Semifinite Measures

Definition 1.2 (Semifinite Measure). Let (X,M, µ) be a measure space. µ is
semifinite if

∀E ∈ M : µ(E) = ∞,∃F ⊂ E : 0 < µ(F ) <∞

Theorem 1.1. Let µ be a semifinite measure and E ∈ M, define

FE = {B ⊂ E : µ(B) <∞}

then supF∈F(E) µ(F ) = µ(E).

Proof. If µ(E) <∞, then E itself satisfies the criterion.

Now suppose that µ(E) = ∞. Suppose for the sake of contradiction that M =
supF∈F(E) µ(F ) <∞. Let {Fn}∞1 such that µ(Fn) ↗M , then

µ

(⋃
n∈N

Fn

)
= lim
n→∞

µ

(
n⋃
k=1

Fn

)
=M

1
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Let F =
⋃
n∈N Fn, then since µ(E) = ∞, µ(E \ F ) = ∞, and there exists

G ⊂ E \ F : 0 < µ(G) < ∞. This gives F ∪ G ⊂ E and M < µ(F ∪ G) < ∞,
which contradicts the fact that M is the supremum.

Definition 1.3 (Semifinite Part). Let (X,M, µ) be a measure space and let

µ0(E) = sup {µ(F ) : F ⊂ E,µ(F ) <∞}

then µ0 is a semifinite measure, known as the semifinite part of µ.

Proof. Basic Properties

Let E ∈ M such that µ(E) <∞, then µ0(E) = µ(E).

Proof. By monotonicity, µ(F ) ≤ µ(E) for all F ⊂ E. This means that µ0(E) ≤
µ(E). Since E itself is finite, µ0(E) ≥ µ(E).

Measure

µ0 is a measure.

Proof. Firstly, µ0(∅) = µ(∅) = 0.

Now, let {En}∞1 be a sequence of disjoint sets. If there exists n ∈ N such that
µ0(En) = ∞, then

{F ⊂ En : µ(F ) <∞} ⊂

{
F ⊂

⋃
n∈N

En : µ(F ) <∞

}

Therefore µ0(E) ≥ µ0(En) = ∞, and µ0(E) = ∞.

Now suppose that µ0(En) <∞ for all n ∈ N and µ0

(⋃
n∈NEn

)
<∞. Let ε > 0

and Fn ⊂ En such that µ(Fn) > µ0(En)− ε/2n. This means that

µ0

(⋃
n∈N

En

)
≥ µ

⋃
k≤n

Fk

 =
∑
k≤n

µ(Fk) ∀n ∈ N

µ0

(⋃
n∈N

En

)
≥
∑
n∈N

µ(Fn) >
∑
n∈N

[µ0(En)− ε/2n]

µ0

(⋃
n∈N

En

)
≥
∑
n∈N

µ0(En)− ε

Since the above applies to all ε > 0, µ0

(⋃
n∈NEn

)
≥
∑
n∈N µ0(En).

Let F ⊂
⋃
n∈NEn such that µ(F ) <∞, then

µ(F ) ≤
∑
n∈N

µ(F ∩ En) ≤
∑
n∈N

µ0(En)

Since this applies to all F ⊂
⋃
n∈NEn, µ0

(⋃
n∈NEn

)
≤
∑
n∈N µ0(En).
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Finally, suppose that µ0(En) < ∞ for all n ∈ N, and µ0

(⋃
n∈NEn

)
= ∞. Let

α ∈ R and F ⊂
⋃
n∈NEn such that α < µ(F ) <∞, then∑
n∈N

µ0(En ∩ F ) ≥
∑
n∈N

µ(En ∩ F ) = µ(F ) > α

Therefore
∑
n∈N µ0(En ∩ F ) = µ0

(⋃
n∈NEn

)
.

Semifinite

µ0 is semifinite.

Proof. Let E ∈ M : µ0(E) ̸= 0, then

µ0(E) = sup {µ(F ) : F ⊂ E,µ(F ) <∞}

There exists F ⊂ E such that 0 < µ(F ) <∞.

1.2 Complete Measures

Definition 1.4 (Complete Measure). Let (X,M, µ) be a measure space, then
µ is complete if it is defined for all P (E) where µ(E) = 0 (E is a null set).

Theorem 1.2 (Completion of Measures). Let (X,M, µ) be a measure space.
Let N = {N ∈ M : µ(N) = 0} be the collection of all null sets in M, and

M = {E ∪ F : E ∈ M, F ⊂ N where N ∈ N}

Then M is a sigma algebra, and there is a unique extension of µ of µ to a
complete measure on M.

Proof.

Figure 1.1: Disjoint Representation of Sets in M

Let E ∪ F ∈ M where E ∈ M is a measurable section, and F ⊆ N ∈ N is a
”small” section. Rewrite E ∪ F = E′ ∪ F ′ where

E′ = E \N F ′ = F ∪ (E ∩N)

Then E ∪F = E′ ∪F ′ is a disjoint union. We can now decompose any element
S ∈ M of into a measurable part and a small part that are disjoint, and have
the measurable E represent S.
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For countable union, we can simply do the union by component

⋃
i∈I

(Ei ∪ Fi) =

(⋃
i∈I

Ei

)
∪

(⋃
i∈I

Fi

)
∈ M

where
⋃
i∈I Ei ∈ M and each Fi ⊆ Ni ∈ N , then

⋃
i∈I

Fi ⊆
⋃
i∈I

Ni ∈ N

since a countable union of null sets is a null set, the small component remains
small.

Figure 1.2: Complement of a Set in M

For complement, take any E ∪ F ∈ M and assume that they are disjoint. Split
X = N ∪ (X \N), then

(E ∪ F )c = [N ∪ (X \N)] \ (E ∪ F )
= [N \ (E ∪ F )] ∪ [(X \N) \ (E ∪ F )]
= [N \ F ] ∪ [(X \N) \ E]

where N \F ⊆ N is still a small set, and (X \N)\E = N c∩Ec is a measurable
set.

So we have M being a σ-algebra.

Let µ : M → [0,∞], µ(E ∪ F ) = µ(E), and assume that E and F are disjoint.
While E may be different based on the choice of representative, µ(E) is always
the same. To see this, let S ∈ M,

S = E1 ∪ F1 = E2 ∪ F2 F1 ⊆ N1, F2 ⊆ N2

be two different decompositions.
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Figure 1.3: Different Representations Differ by a Null Set

Then the difference between E′
1 and E′

2 must lie within N1 ∪N2 (so it’s also a
null set). Let x ∈ E′

1 but x ̸∈ E′
2, then since E′

1 ∪ F ′
1 = E′

2 ∪ F ′
2, x ∈ F ′

2 ⊆ N2.
Let x ∈ E′

2 but x ̸∈ E′
1, then since E′

1 ∪ F ′
1 = E′

2 ∪ F ′
2, x ∈ F ′

1 ⊆ N1. So

E′
1 \ E′

2 ⊆ N2 E′
2 \ E′

1 ⊆ N1

So the choice of E shouldn’t change the value of the measure.

E1 ∪ F1 = [(E1 ∩ E2) ∪ (E1 \ E2)] ∪ F1

= (E1 ∩ E2) ∪ (E1 \ E2) ∪ F1

E2 ∪ F2 = [(E2 ∩ E1) ∪ (E2 \ E1)] ∪ F2

= (E1 ∩ E2) ∪ (E2 \ E1) ∪ F2

where (E1 \ E2) ∪ F1, (E2 \ E1) ∪ F2 ⊆ N1 ∪N2, and

µ(E1 ∪ F1) = µ(E1 ∩ E2) = µ(E2 ∪ F2)

therefore µ is well-defined.

Since µ inherits properties from µ on its values on the measurable sets E ∈ M,
and that its behaviour is uniquely determined by the measurable component of
each E ∪ F (it just ignores the small sets), it remains a measure by ”””project-
ing””” everything in M down to its E component.
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Now, µ(∅) = µ(∅) = 0, and let Ei ∪ Fi be a countable family of sets in M, then

µ

(⋃
i∈I

Ei ∪
⋃
i∈I

Fi

)
= µ

(⋃
i∈I

Ei ∪
⋃
i∈I

Fi

)

= µ

(⋃
i∈I

Ei

)
=
∑
i∈I

µ(Ei)

=
∑
i∈I

µ(Ei ∪ Fi)

and µ is a measure.

Let E ∪ F ∈ M be a null set and F ⊆ N ∈ N , then µ(E ∪ F ) = µ(E) = 0,
and E ∈ N is also a null set. This means that P (E ∪N) ⊆ M and µ’s domain
includes all subsets of its null sets. We achieved this by adding all small sets
from M to M.

Finally, since the small component F of each E ∪ F ∈ M is a subset of a
null set of µ, any extension µ′ of µ into M must have 0 = µ′(N) ≥ µ′(F ) = 0.
Extensions of µ into M must entirely depend on the µ-measurable E component,
and must agree with µ on them. Assuming that E ∩ F = ∅,

µ′(F ) = 0 ⇒ µ′(E ∪ F ) = µ′(E) + µ′(F ) = µ′(E) = µ(E)

then µ′ = µ, and the extended measure is unique.

1.3 Outer Measures

Figure 1.4: Outer and Inner Measures

To calculate the area of a specific region without a handy formula, we can cover
it with shapes whose area we do know, from the inside and from the outside to
approximate the actual area. With finer and finer approximations, we can take
the area of the shape to be its outer and inner measure, if they are equal.

Definition 1.5 (Outer Measure). An outer measure on a non-empty set X
is a function µ∗ : P (X) → [0,∞] that satisfies:
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1. µ∗(∅) = 0

2. F ⊆ E ⇒ µ∗(F ) ≤ µ∗(E)

3. µ∗ (⋃
i∈I Ei

)
≤
∑
i∈I µ

∗(Ai), |I| ≤ |N|
Outer measures approximate sets from above. See Upper and Lower Approxi-
mations for more details on the general idea.

Theorem 1.3 (Outer Approximation). Let E ⊆ P (X) be a family of sets with
∅ ∈ E and X ∈ E, and ρ : E → [0,∞] be a notion of measure with ρ(∅) = 0.
Define for any A ⊆ X,

µ∗(A) = inf

{∑
i∈I

ρ(Ei) : Ei ∈ E , A ⊆
⋃
i∈I

Ei

}

where I is a countable index set. Then µ∗ is an outer measure.

Proof. Firstly, the set that we take the infimum from is non-empty, as for E1 =
X,Ek = ∅∀k > 1 forms an elementary cover for any A ∈ P (X). So when
µ∗(A) = ∞, it comes from our notion of measure ρ, and not a lack of an
elementary cover for A.

Now, let A ⊆ B with A,B ∈ P (X), then any elementary cover of B also covers
A, giving {

I : Ei ∈ E , A ⊆
⋃
i∈I

Ei

}
⊇

{
I : Ei ∈ E , B ⊆

⋃
i∈I

Ei

}

inf

{∑
i∈I

ρ(Ei) : A ⊆
⋃
i∈I

Ei

}
≤ inf

{∑
i∈I

ρ(Ei) : B ⊆
⋃
i∈I

Ei

}
µ∗(A) ≤ µ∗(B)

Finally, let {Aj}∞1 ⊆ P (X) be a countable sequence of sets, and {Ei}i∈Ij ⊆ E
be an elementary cover of Aj , where

⋃
i∈Ij Ei ⊇ Aj . This provides a way of

writing A as an elementary cover from the elementary covers of each Aj :

A =
⋃
j∈N

Aj ⊆
⋃
j∈N

⋃
i∈Ij

Ei Ei ∈ E

Let K =
⋃
j∈N Ij , then K is countable, and

K ∈

{
I : A ⊆

⋃
i∈I

Ei

}
⋃
k∈K Ek is a countable cover of A with elementary sets, meaning that

µ∗(A) ≤
∑
k∈K

ρ(Ek) ≤
∑
j∈N

∑
i∈Ij

ρ(Ei)



8 CHAPTER 1. MEASURES

for any choice of elementary covers for each Aj .

This allows us to construct a sequence as follows. Firstly, since each µ∗(Aj) is
an infimum, we can approach each one of them as a sequence from above, where
for each xj,k (j-th sequence, k-th entry)

∃Ij,k : xj,k =
∑
i∈Ij,k

ρ(Ei)

and limk→∞ xj,k = µ∗(Aj). This yields a countable family of sequences
{
{xk}j

}
where each {xk}j approaches µ∗(Aj) from above.

Now, since for any sequence in the family, we can take entries that are arbitrarily
close to the infimum

∀εn > 0, j ∈ N,∃kn ∈ N : xj,kn < µ∗(Aj) + εn2
−j

and collect them such that their sum is arbitrarily close to the sum of the
infimums. Using this, we can set εn = 1/n and form a new sequence:

xn =
∑
j∈N

xj,kn <
∑
j∈N

µ∗(Aj) + εn2
−j

=
∑
j∈N

µ∗(Aj) + 2εn

that approach
∑
j∈N µ

∗(Aj) from above. Since each xn represents a countable el-
ementary cover of A, each entry pushes µ∗(A) closer and closer to

∑
j∈N µ

∗(Aj),
making it such that µ∗(A) ≤

∑
j∈N µ

∗(Aj) at the limit.

Definition 1.6 (Outer Measurable). For any set E ⊆ X, use A to cut E into
two pieces, one inside and one outside of A.

If outer-measuring the pieces individually yields the same measure as outer-
measuring the entire set, then the ”borders” of A is ”compatible” with the outer
measure: the distribution of mass created by the cut can be approached by the
outer measure.

If the outer measure uses an elementary collection of sets with measure to ap-
proximate the measure of a given set, then the distribution of mass around the
”borders” of a measurable set should be able to be approached by those elemen-
tary sets.

We formalise the idea as follows: Let X be a set and µ∗ : P (X) → [0,∞] be an
outer measure on X. Then a set A ⊆ X is µ∗-measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀E ∈ P (X)

Theorem 1.4 (Carathéodory). If µ∗ is an outer measure on X, then the col-
lection M of µ∗ measurable sets is a sigma algebra, and the restriction of µ∗ to
M is a complete measure.
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Figure 1.5: Finite Unions of Measurable Sets are Measurable

Proof. A set is µ∗ measurable if the distribution of mass around its border can
be approached by µ∗. For any A ∈ M, the cuts made by A is the same as the
cuts made by its complement:

A ∈ M ⇒ µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀E ∈ P (X)

= µ∗(E ∩Ac) + µ∗(E ∩Acc)
⇒ Ac ∈ M

It doesn’t matter which side of the border is filled, so M is closed under com-
plements.

Now, let A,B ∈ M, then the border of A ∪ B is just a combination of the old
ones. Cutting a set with A ∪ B is equivalent to using some part of A’s border,
and part of B’s. Since each part of the new border is approachable by µ∗, the
entire border is also approachable.

To see this, let A,B ∈ M and E ∈ P (X). First cut E with A, which

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)

cleanly distributes the mass into two pieces. Then cut each piece with B:

µ∗(E ∩A) = µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)
µ∗(E ∩Ac) = µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc)

which cleanly distributes the mass into four pieces in total, yielding

µ∗(E) = µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)
+ µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc)

Since the cuts made by A and B are clean, we can ”re-stitch” parts of them
together along those cuts as follows.

First mend the blue and green piece together with the cut made by B.

A ∪B ⊇ A⇒ [E ∩ (A ∪B)] ∩A = E ∩A
µ∗([E ∩ (A ∪B)] ∩A) = µ∗(E ∩A)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)
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”Reformat” E ∩Ac ∩B like so to isolate the cut made by A:

[E ∩ (A ∪B)] ∩Ac = E ∩ [(A ∪B) ∩Ac]
= E ∩ [(A ∩Ac) ∪ (B ∩Ac)]
= E ∩B ∩Ac

µ∗([E ∩ (A ∪B)] ∩Ac) = µ∗(E ∩B ∩Ac)

Then combine the two pieces like so by mending the cut made by A:

µ∗(E ∩ (A ∪B)) = µ∗([E ∩ (A ∪B)] ∩A)
+ µ∗([E ∩ (A ∪B)]] ∩Ac)
= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)
+ µ∗(E ∩Ac ∩B)

We ”reformat” E ∩Ac ∩Bc to combine the cuts made by A and B:

E ∩Ac ∩Bc = E \ (A ∪B) = E ∩ (A ∪B)c

And finally, we combine E ∩ (A ∪B) and E ∩ (A ∪B)c to find that

µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B)

+ µ∗(E ∩Ac ∩Bc)
= µ∗(E)

the cuts made by A ∪ B distribute mass in a way that can be approached by
the outer measure, meaning that A ∪ B ∈ M. M is closed under finite union,
and is an algebra.

Since the borders of µ∗-measurable sets cleanly distributes mass along them,
there is no ambiguity when the borders are close to each other, as they ”pull”
the approached mass towards the inside of their sets. When two µ∗ measurable
sets share a border, that border also cleanly splits the mass between the two.

To see this, let A,B ∈ M, A ∩ B and consider µ∗(A ∪ B). We use A to cut
A ∪B back to A and B to obtain

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac)
= µ∗(A) + µ∗(B)

Since we only used A to make the cut, this works even if B ̸∈ M. So µ∗ is
finitely additive on M.

Now, since µ∗ works by approaching the mass of sets from the outside, all sets in
M are ”limit points” of µ∗’s approximations. As we have all the ”limit points”,
M should be ”closed”, and for any sequence of sets in M, their ”limit” can also
be approached by µ∗.
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To see this, let {Aj}∞1 ⊆ M be a sequence of pairwise disjoint sets.

µ∗

(⋃
i∈N

Ai

)
≥ µ∗

(⋃
i∈I

Ai

)
∀I ⊂ N, |I| < |N|

=
∑
i∈I

µ∗(Ai) ∀I ⊂ N, |I| < |N|

µ∗

(⋃
i∈N

Ai

)
≥ sup

{∑
i∈I

µ∗(Ai) : I ⊂ N, |I| < |N|

}

µ∗

(⋃
i∈N

Ai

)
=
∑
i∈N

µ∗(Ai)

The expanding borders of
⋃
i∈I Ai approaches

⋃
i∈NAi, allowing µ

∗ to also ap-
proach the union. So µ∗ is countably additive for sets in M.

Now, let E ∈ P (X), A =
⋃
i∈NAi, and I ⊂ N, |I| < |N|. Then we can cut E

with
⋃
i∈I Ai.

µ∗(E) = µ∗

(
E ∩

⋃
i∈I

Ai

)

+ µ∗

(
E ∩

(⋃
i∈I

Ai

)c)

We can cut the left part with each Ai as

µ∗

(
E ∩

⋃
i∈I

Ai

)

= µ∗

(
E ∩

⋃
i∈I

Ai ∩Ai1

)
+ µ∗

(
E ∩

⋃
i∈I

Ai ∩Aci1

)

= µ∗(E ∩Ai1) + µ∗

E ∩
⋃

i∈I,i̸=i1

Ai


...

=
∑
i∈I

µ∗(E ∩Ai)

into |I| disjoint pieces, preserving the total mass with the clean cuts of each Ai.

We now relax the borders of the complement and let E ∩
⋃
i∈I Ai approach
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E ∩
⋃
i∈NAi from below.

µ∗(E) = µ∗

(
E ∩

⋃
i∈I

Ai

)
+ µ∗

(
E ∩

(⋃
i∈I

Ai

)c)

≥ µ∗

(
E ∩

⋃
i∈I

Ai

)
+ µ∗

(
E ∩

(⋃
i∈N

Ai

)c)

=
∑
i∈I

µ∗(E ∩Ai) + µ∗

(
E ∩

(⋃
i∈N

Ai

)c)

Mending the cuts made by each Ai yields a subset of the entire union. Since the
cuts of each Ai cleanly distributes the mass among them, there is no double-
counting and the mass can never exceed that of the union.

∑
i∈I

µ∗(E ∩Ai) = µ∗

(
E ∩

⋃
i∈I

Ai

)
≤ µ∗

(
E ∩

⋃
i∈N

Ai

)
∑
i∈N

µ∗(E ∩Ai) ≤ µ∗

(
E ∩

⋃
i∈N

Ai

)

And in this process, we also cover the entirety of the union, so the measured
mass can also be no less than the mass of the union.

∑
i∈N

µ∗(E ∩Ai) = µ∗

(
E ∩

⋃
i∈N

Ai

)

which yields

µ∗(E) ≥
∑
i∈N

µ∗(E ∩Ai) + µ∗

(
E ∩

(⋃
i∈N

Ai

)c)

= µ∗

(
E ∩

⋃
i∈N

Ai

)
+ µ∗

(
E ∩

(⋃
i∈N

Ai

)c)
≥ µ∗(E)

and

µ∗(E) = µ∗

(
E ∩

⋃
i∈N

Ai

)
+ µ∗

(
E ∩

(⋃
i∈N

)c)
As the distribution of mass around border of the union is approached by finite
unions of {Ai}, it ended up also being one approachable by µ∗. So

⋃
i∈NAi ∈ M

and M is a σ-algebra, and µ∗ is a measure on M.

Finally, let N ∈ M : µ∗(N) = 0, then the distribution of mass around its
borders can be approached by µ∗. However, the lack of mass inside the borders
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Figure 1.6: Outer Measure is Complete

of N means that there is no mass to ”leak” into N . Any subsets of N simply
do not have any mass to distribute, they just push all of the mass outside.

To see this, let N ∈ M, F ⊂ N and E ∈ P (X), then we first cut E with N

µ∗(E) = µ∗(E ∩N) + µ∗(E ∩N c)

and find that µ∗(E ∩N) ≤ µ∗(N) = 0. Now use F to cut E ∩N to obtain

µ∗(E ∩N) = µ∗(E ∩N ∩ F ) + µ∗(E ∩N ∩ F c) = 0

as there is no mass to distribute. We mend the cut made by N to obtain

µ∗(E) = µ∗(E ∩N) + µ∗(E ∩N c)

= µ∗(E ∩N ∩ F ) + µ∗(E ∩N ∩ F c) + µ∗(E ∩N c)

= µ∗(E ∩ F ) + µ∗(E ∩N ∩ F c) + µ∗(E ∩N c ∩ F c)
= µ∗(E ∩ F ) + µ∗(E ∩ F c)

and F ∈ M is µ∗ measurable. Since all subsets of null sets are measurable,
µ∗|M is a complete measure.

1.4 Carathéodory’s Extension Theorem

Definition 1.7 (Elementary Family). Let X be a set, then E ⊆ P (X) is an
elementary family if

1. ∅ ∈ E

2. E,F ∈ E ⇒ E ∩ F ∈ E (closed under finite intersection)

3. E ∈ E implies that Ec is a finite disjoint union of members of E.

Theorem 1.5. If E is an elementary family, then the collection

A =

{
n⋃
i=1

Ei : Ei ∈ E , n ∈ N, {Ei}n1 disjoint

}

of finite disjoint unions of members of E is an algebra.
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Proof. Let A,B ∈ E , then Bc =
⋃n
i=1Bi is a finite disjoint union (FDU) of

elements of E , and since E is closed under intersections,

A \B = A ∩Bc = A ∩
n⋃
i=1

Bi =

n⋃
i=1

A ∩Bi

is a FDU of elementary sets. Since A\B∪B is also a disjoint union, A\B,A∪B ∈
A. Therefore

⋃n
i=1Ei ∈ A for any Ei ∈ E , n ∈ N.

Let A =
⋃m
i=1Ai, B =

⋃n
i=1Bi ∈ A, then A ∪ B is a union of elementary sets,

and therefore is also in A.

Let E =
⋃m
i=1Ei, then since Ei =

⋃n
j=1Ei,j is also a FDU of elementary sets.

Ec =

m⋂
i=1

Eci =

m⋂
i=1

n⋃
j=1

Ei,j

then applying the following identity(
m⋃
i=1

Ai

)
∩

 n⋃
j=1

Bj

 =

m⋃
i=1

Ai ∩ n⋃
j=1

Bj

 =

m⋃
i=1

n⋃
j=1

Ai ∩Bj

repeatedly yields

Ec =

m⋂
i=1

n⋃
j=1

Ei,j

=

n⋃
i1=1

· · ·
n⋃

im=1

E1,i1 ∩ · · · ∩ Em,im

=
⋃

i⃗∈[1,n]m

m⋂
j=1

Ej,ij

Since E is closed under finite intersections, each
⋂m
j=1Ej,ij ∈ E , and Ec is a

FDU of E , and Ec ∈ A.

Definition 1.8. Let X be a set and A ⊆ P (X) be an algebra, then a function
µ0 : A → [0,∞] is a premeasure if

1. µ0(∅) = 0

2. If {Ai}∞1 is a sequence of disjoint sets in A where
⋃
i∈NAi ∈ A, then

µ0

(⋃
i∈NAi

)
=
∑
i∈N µ0(Ai).

In other words, µ0 is a finitely-additive measure on A, with the occasional count-
able additivity when the union happens to also be in A.
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Theorem 1.6. Let X be a set, A ⊆ P (X) be an algebra, and µ0 be a premeasure
on A, then µ0 induces an outer measure

µ∗(A) = inf

{∑
i∈I

µ0(Ei) : Ei ∈ A,
⋃
i∈I

Ei ⊇ A

}
on X.

Proof. Since µ0 defines a notion of measure on a family of sets E = A, the
outer approximation theorem applies. µ∗ acts as an ”least upper bound” on the
mass of A, taking the infimum of all possible upper bounds on its mass.

Theorem 1.7. Let X be a set, A ⊆ P (X) be an algebra, µ0 be a premeasure
on A, and µ∗ be the induced outer measure, then

1. µ∗|A = µ0.

2. Every set in A is outer measurable.

Proof. The first part essentially means that the elementary sets A and the
notion of measure µ0 is one that ”makes sense”. Since A is an algebra and µ0

is a premeasure, there are no ways to chop any elementary sets into smaller
elementary sets and somehow ”lose” mass in the process.

To begin, each elementary set E ∈ A can simply be approximated by itself from
the outside, giving µ∗(E) ≤ µ0(E).

Let {Ei}∞1 be an elementary cover of E ∈ A. Since each part of the cover is
in A, we can remove any overlap. With E also being in A, we can remove any
”over-covering”. So the only parts relevant to the outer measure is the tightest
part of it, or simply its way of cutting E into disjoint pieces.

Now, let {Ei}∞1 be a sequence of sets such that
⋃
i∈NEi ⊇ E. Take F1 = E1

and Fk = E ∩
(
Ek \

⋃k−1
i=1 Ei

)
, then {Fi}∞1 is a disjoint sequence of sets in A

where
⋃
i∈N Fi = E. However, as µ0 is a premeasure and each Fi ∈ A, the mass

of E is the combination of the masses of each Fi in the first place, so there is
no mass lost with this partition:

µ0(E) =
∑
i∈N

µ0(Fi) ≤
∑
i∈N

µ0(Ei) ⇒ µ∗(E) ≥ µ0(E)

Therefore µ∗(E) = µ0(E) for any E ∈ A, and µ∗|A = µ0.

Figure 1.7: Sets in the algebra are outer-measurable
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A set is outer-measurable if the distribution of mass along its borders is ap-
proachable by µ∗. Since for any elementary set E ∈ A, µ∗ uses E itself to
approach it, the distribution of mass along the border is already precisely mea-
sured. E itself can be used to cut the approximating sets cleanly, which then
separates the approximation into two parts with no ambiguity along its border.

To see this, let A ∈ P (X), E ∈ A and, {Ei}∞1 be an elementary cover of A.
Then we can take

Ii = E ∩ Ei Oi = Ec ∩ Ei

then {Ii}∞1 is an elementary cover of E ∩A and {Oi}∞1 is an elementary cover
of Ec ∩A, and together they cover A.

(E ∩A) ∪ (Ec ∩A) =

(⋃
i∈N

E ∩ Ei

)
∪

(⋃
i∈N

Ec ∩A

)

Since {Ii}∞1 and {Oi}∞1 are elementary covers, we have

µ∗(E ∩A) ≤
∑
i∈N

µ0(Ii)

µ∗(Ec ∩A) ≤
∑
i∈N

µ0(Oi)

Moreover, Ei = Ii ∪Oi is a disjoint union, so

µ0(Ei) = µ0(Ii) + µ0(Oi)

and we have

µ∗(E ∩A) + µ∗(Ec ∩A) ≤
∑
i∈N

µ0(Ii) +
∑
i∈N

µ0(Oi)

=
∑
i∈N

µ0(Ei)

meaning that µ∗(E ∩A) + µ∗(Ec ∩A) is a lower bound for∑
j∈J

µ0(Ej) : |J | = |N|, Ej ∈ A,
⋃
j∈J

µ0(Ej) ⊇ A


and

µ∗(E ∩A) + µ∗(Ec ∩A) ≤ µ∗(A)

Therefore

µ∗(E ∩A) + µ∗(Ec ∩A) = µ∗(A)

and E ∈ M is µ∗ measurable.
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Theorem 1.8 (Carathéodory’s Extension Theorem). Let X be a set, A ⊆
P (X) be an algebra, µ0 be a premeasure on A, and M = M(A) be the sigma
algebra generated by A.

Then there exists a measure on M whose restriction to A is µ0, being the induced
outer measure µ = µ∗.

If v is another measure on M that extends µ0, then v(E) ≤ µ(E) for any
E ∈ M, with equality when µ(E) < ∞. If µ0 is σ-finite, then µ is the unique
extension of µ0 to a measure on M.

Proof. By Carathéodory’s Theorem, the induced outer measure µ∗ has a collec-
tion of measurable sets M being a sigma algebra. Since A ⊆ M are all outer
measurable, M ⊇ M(A) contains a ”spanning set” of M(A), and therefore
contains M = M(A). As shown earlier, the restriction of µ∗ to A is equal to
µ0.

Let v be another measure on M that extends µ0, E ∈ M, and {Ei}∞1 ⊇ E be
an elementary cover of E. Then

v(E) = v

(⋃
i∈N

Ei

)
≤
∑
i∈N

v(Ei) =
∑
i∈N

µ0(Ei)

and v(E) is a lower bound for{∑
i∈I

µ0(Ei) : |I| = |N|, Ei ∈ A,
⋃
i∈N

Ei ⊇ E

}

and we have v(E) ≤ µ∗(E) since µ∗(E) is the greatest lower bound.

We take advantage of the fact that v is also an extension of µ0 by taking limits
on sets that they agree on. Let {Ei}∞1 be an elementary cover of E, and take

Aj =

j⋃
i=1

Ei Aj ∈ A

then
v(Aj) = µ∗(Aj) = µ0(Aj) ∀j ∈ N

and using continuity from below,

v

(⋃
i∈N

Ei

)
= lim
i→∞

v(Ai) = lim
i→∞

µ∗(Ai) = µ∗

(⋃
i∈N

Ei

)

Suppose that µ∗(E) <∞, then since µ∗ is the infimum,

∀ε > 0,∃I : |I| = |N|, Ei ∈ A,
⋃
i∈I

Ei ⊇ E,
∑
i∈I

µ0(Ei) < µ∗(E) + ε
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Take {Ei}∞1 such that

µ∗(E) + ε >
∑
i∈N

µ0(Ei) ≥ µ∗

(⋃
i∈N

Ei

)
= v

(⋃
i∈N

Ei

)
≥ µ∗(E)

with the inequality coming from subadditivity and monotonicity. Decompose

µ∗

(⋃
i∈N

Ei

)
= µ∗(E) + µ∗

(⋃
i∈N

Ei \ E

)
< µ∗(E) + ε

µ∗

(⋃
i∈N

Ei \ E

)
< ε

v

(⋃
i∈N

Ei

)
= v(E) + v

(⋃
i∈N

Ei \ E

)

v

(⋃
i∈N

Ei \ E

)
≤ µ∗

(⋃
i∈N

Ei \ E

)
< ε

and we obtain

µ∗(E) ≤ v

(⋃
i∈N

Ei

)
= v(E) + v

(⋃
i∈N

Ei \ E

)
< v(E) + ε

Rearranging the equation, and since we can find an elementary cover for any
ε > 0,

µ∗(E)− ε < µ∗(E)− v

(⋃
i∈N

Ei \ E

)
< v(E) ≤ µ∗(E)

we can approach v(E) from below by arbitrarily squishing the overcover. This
is possible because M is a sigma algebra generated by A, and allows us to
approach E and its measure using just the elementary sets.

Let εn = 1
n and In be such that

⋃
i∈In Ei ⊇ E,Ei ∈ A and

∑
i∈In µ0(Ei) <

µ∗(E) + εn. This gives

xn = µ∗(E)− v

(⋃
i∈In

Ei \ E

)
> µ∗(E)− 1

n

then
xn < v(E) ≤ µ∗(E)∀n ∈ N lim

n→∞
xn = µ∗(E)

which gives
v(E) = µ∗(E)

Suppose that µ∗ is σ-finite, then we can decompose

X =
⋃
j∈N

Ej µ∗(Ej) <∞
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further into

Fj = Ej \
j−1⋃
i=1

Ei
⋃
i∈N

Fj = X v(Ej) ≤ µ∗(Ej) <∞

and the Fjs form a disjoint union.

Then taking any E ∈ M,

µ∗(E) = µ∗

(⋃
i∈N

E ∩ Fi

)
=
∑
i∈N

µ∗(E ∩ Fi)

=
∑
i∈N

v(E ∩ Fi)

= v

(⋃
i∈N

E ∩ Fi

)
= v(E)

and µ∗ = v is unique.

1.5 Dynkin’s Uniqueness Theorem

Dynkin’s uniqueness theorem is very useful for situations involving product
measures and probabilistic independence. Proof taken from Professor Addario-
Berry’s notes.

Definition 1.9 (λ-System). Let Ω be a set and A ⊂ P (Ω) be a collection of
subsets. We say that A is a λ-system if

1. The whole space Ω ∈ A.

2. For any E,F ⊂ A where E ⊂ F , we have F \ E ∈ A.

3. For any increasing sequence {An}∞1 ⊂ A,
⋃
n∈NAn ∈ A.

Theorem 1.9. Let Ω be a ground set. If A is a π-system and a λ-system, then
A is a σ-algebra.

Proof. Since Ω ∈ A, A is closed under complements.

If a λ-system is closed under finite unions, then it is also closed under countable
unions, so we can reduce this to simply finite unions. To this end, just use
complements to write unions as intersections. For any E,F ∈ A,

E ∪ F = (E ∪ F )cc = (Ec ∩ F c)c
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Lemma 1.10. Let P be a π-system, and

M = {E ∈ λ(P) : E ∩ F ∈ λ(P) ∀F ∈ P}

be the collection of cooperative sets, then N is a λ-system with N = λ(P).

Proof. Let E,F ∈ M such that F ⊃ E, and G ∈ λ(P), then

(F \ E) ∩G = (F ∩G)︸ ︷︷ ︸
∈λ(P)

\ (E ∩G)︸ ︷︷ ︸
∈λ(P)

∈ λ(P)

and F \ E ∈ M.

Let {En}∞1 ⊂ M, then(⋃
n∈N

En

)
∩G =

⋃
n∈N

(En ∩G)︸ ︷︷ ︸
∈λ(P)

∈ λ(P)

and
⋃
n∈NEn ∈ M. Therefore M is a λ-system.

Since P is a π-system, P ⊂ M. As M is a λ-system containing P, M =
λ(P).

Lemma 1.11. Let P be a π-system, and

N = {E ∈ λ(P) : E ∩ F ∈ λ(P) ∀F ∈ λ(P)}

be the collection of helpful sets, then N is a λ-system with N = λ(P).

Proof. Let E ∈ P, then since M = λ(P), E ∩ F ∈ λ(P) for all F ∈ M = λ(P).
Therefore E ∈ N .

By similar arguments as above, N is a λ-system.

Since N = λ(P), we have E ∩ F ∈ λ(P) for all E,F ∈ λ(P), making it a
π-system.

Theorem 1.12 (Dynkin’s π-System Lemma). Let P be a π-system over a
ground set Ω, then

σ(P) =
⋂

F⊃P :F σ-field

F =
⋂

F⊃P:F λ-system

F = λ(P)

In other words, the σ-algebra generated by P is the same as the λ-system gen-
erated by P.

Proof Outline. Since every σ-field is a λ-system, σ(P) ⊃ λ(P), so it’s sufficient
to show that λ(P) is a σ-field as well. As λ(P) is a λ-system and a π-system, it
is a σ-field.
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Theorem 1.13 (Dynkin’s Uniqueness Theorem). Let (X,F) be a measurable
space and P ⊂ M be a π-system with σ(P) = F . Let µ1, µ2 be measures on F ,
and suppose that 1. µ1(E) = µ2(E) for all E ∈ P. 2. There exists a sequence
{Xn}∞1 ⊂ P such that Xn ↗ X and µ1(Xn) <∞ for all n ∈ N.

Then µ1 = µ2.

Proof. Let G ∈ P with µ1(G) <∞, and let

A = {E ∈ F : µ1(E ∩G) = µ2(E ∩G)}

then A ⊃ P with Ω ∈ A, and we claim that A is a lambda-system.

Let {En}∞1 be an increasing sequence of sets in A, then by continuity from
below,

⋃
n∈NEn ∈ A. Let E,F ∈ A with F ⊃ E, then

µ1(G ∩ (F \ E)) = µ1(G ∩ F )− µ1(G ∩ E)

= µ2(G ∩ F )− µ2(G ∩ E)

= µ2(G ∩ (F \ E))

and F \E ∈ A. Then A is a λ-system. By Dynkin’s π-System Lemma, A = F .

Let E ∈ F , and {Fn}∞1 ⊂ P such that µ1(Fn) = µ2(Fn) < ∞ for all n, and
Fn ↗ Ω. Now by continuity from below on both measures,

µ1(E) = lim
n→∞

µ1(E ∩ Fn) = lim
n→∞

µ2(E ∩ Fn) = µ2(E)
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Chapter 2

Point Set Topology

Definition 2.1 (Topology). Let X be a non-empty set of points. A family of
subsets T ⊆ P (X) forms a topology on X if:

1. ∅, X ∈ T

2. Arbitrary unions of elements of ct is another element of T .

3. Any finite intersection in T is another element of T .

The pair (X, T ) is called a topological space, and the elements of T are the
open sets of T .

2.1 Continuous Maps

Figure 2.1: Nested Open Sets That Mirror R’s Topological Structure

Theorem 2.1. Let (X, T ) be a normal space, and A,B ⊂ X be closed sets. Let

∆ =

{
k

2n
: n ∈ N, 0 < k < 2n

}
be the collection of dyadic rational numbers in (0, 1), then there is a family of
open sets

F = {Ur : r ∈ ∆}

such that A ⊂ Ur ⊂ Bc for all r ∈ ∆, and that the closure Ur ⊂ Us for all r < s.

23
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Figure 2.2: Dyadic Construction of Nested Open Sets

Proof. Denote U0 = A and U1 = Bc, and let F0 = {U0, U1}, then A ⊂ Ur ⊂ Bc

for all Ur ∈ F0, and U0 = A ⊂ Bc = U1. Moreover, all sets in F0 except U0 is
open.

Let n ∈ N, and suppose that Fn−1 satisfies the above criteria (except U0 being
closed), and write

Fn−1 =
{
U k

2n−1
: 0 ≤ k ≤ 2n−1

}
=
{
U 2k

2n
: 0 ≤ k ≤ 2n−1

}
Let k ∈ [0, 2n] be an odd number, then k + 1 and k − 1 are even, Uk−1, Uk+1 ∈
Fn−1 are already defined. Since Uk−1 ⊂ Uk+1, Uk−1 and U ck+1 are disjoint
closed sets. As X is normal,

∃U ∈ T : Uk−1 ⊂ U ⊂ U ⊂ (U ck+1)
c = Uk+1

Let Uk = U be such an open set, then A ⊂ Uk ⊂ Bc. Moreover, Uk ⊂ Uk+1 ⊂ Us
for all odd s > k, and Uk ⊂ Uk+1 ⊂ Us−1 ⊂ Us for all even s > k + 1. Define

Fn+1 =
{
U k

2n
: 0 ≤ k ≤ 2n−1

}
then Fn+1 also satisfies the desired criteria.

Take F =
⋃
n∈N Fn \ {U0, U1}, then every Ur ∈ F satisfies A ⊂ Ur ⊂ Bc, and

with the exclusion of U0, every set in F is open.

For any Ur, Us, there exists Fn such that Ur, Us ∈ Fn. In which case, if r < s,
Ur ⊂ Us. Moreover, for any dyadic number r = k

2n , Ur ∈ Fn ⊂ F . Therefore F
has the desired properties.
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Figure 2.3: Layer Cake Construction of a Continuous Function

Theorem 2.2 (Urysohn’s Lemma). Let (X, T ) be a normal topological space.
If A,B ⊂ X are disjoint closed sets, then there exists a continuous function
f : X → [0, 1] such that f = 0 on A and f = 1 on B.

As a result, every normal space is completely regular.

Proof. Let ∆ =
{
k
2n : n ∈ N, 0 < k < 2n

}
be the collection of dyadic rational

numbers in (0, 1), then any number x ∈ [0, 1] can be approximated by elements
of ∆. For any r ∈ (0, 1), we can write r = sups∈∆:s<r s = infs∈∆:s>r s.

Let

f : X 7→ [0, 1] x 7→ inf {r : x ∈ Ur}

where we assign x a value based on its stage of ”interpolation” from A to B.
Then since A ⊂ Ur ⊂ B for all r ∈ ∆, f(A) = {0} and f(B) = {1}.

Let α ∈ [0, 1], then since α = sups∈∆:s<α s, f(x) < α if and only if there exists
s ∈ ∆ : s < α such that f(x) < s, which only happens when x ∈

⋃
s∈∆:s<α Us.

Therefore

f−1((−∞, α)) =
⋃

s∈∆:s<α

Us

As each Us is open,
⋃
s<α Us is open.

Since α = infs>α s, f(x) > α if and only if there exists s > α such that f(x) > s
and x ∈ U cs . If x ∈ U cs , then there exists t ∈ ∆ ∩ (α, s) such that Ut ⊂ Ut ⊂ Us
and x ∈ Ut

c ⊃ U cs . If x ∈ Ut
c
for some t, then there exists s ∈ ∆ ∩ (α, t) such

that Us ⊂ Ut ⊂ Ut and x ∈ U cs ⊃ Ut
c
. Therefore

f−1((α,∞)) =
⋃

s∈∆:s>α

U cs =
⋃

t∈∆:t>α

Ut
c

As each Ut
c
is open,

⋃
t>α Ut

c
is open.

Since the open rays generate the standard topology on R, and the preimage of
those open rays are open, f is continuous.

Theorem 2.3 (Tietze Extension Theorem). Let (X, T ) be a normal space,
A ⊂ X be a closed set and f ∈ BC(A, [a, b]) be a bounded continuous function.
Then there exists a continuous extension F ∈ BC(X, [a, b]) of f to the whole
space.



26 CHAPTER 2. POINT SET TOPOLOGY

Proof. First suppose that f ∈ BC(A, [0, 1]).

Using the Method of Successive Approximations, take BC(A, [0, 1]) equipped
with the uniform norm as the space, with

T : BC(X, [0, 1]) → BC(A, [0, 1]) f 7→ f |A

as the continuous linear map, and Σ = BC(X, [0, 1]) as the approximating sets.

Let f ∈ BC(A, [0, 1]) and take

B = f−1 (||f || · [0, 1/3]) C = f−1 (||f || · [2/3, 1])

As f is continuous, and B,C are closed in A under the relative topology. Since
A is closed, B,C are closed in X as well.

By Urysohn’s Lemma, there exists a continuous function ϕ : X → [0, ||f || /3]
such that ϕ(B) = {0} and ϕ(C) = {||f || /3}. Since ϕ(x) ≤ ||f || /3 for all x ∈ X,
||ϕ|| ≤ ||f ||. Now,

f(x)− ϕ(x) ≤ ||f ||
(
1− 1

3

)
=

2

3
||f || ∀x ∈ B

0 ≤ f(x)− ϕ(x) ≤ ||f ||
(
2

3
− 0

)
2

3
||f || ∀x ∈ Bc ∩A

with f(x) ≥ 1
3 ≥ ϕ(x) for all x ∈ Bc ∩A and f(x) ≥ 0 = ϕ(x) for all x ∈ B, we

have ||f(x)− ϕ|A(x)|| ≤ 2
3 ||f ||.

Therefore Σ satisfies the criterion for the method of successive approximations,
and for any f ∈ BC(A, [0, 1]) there exists {ϕn}∞1 ⊂ BC(X, [0, 1]) such that
(
∑∞
n=1 ϕn) |A = f .

Now let f ∈ BC(A, [a, b]). Taking g = f−a
b−a yields a function g ∈ BC(A, [0, 1]).

Reversing the transformation on the extension yields a continuous extension of
the original f .

2.2 LCH Spaces

Definition 2.2 (LCH Space). Let (X, T ) be a topological space. X is locally
compact if every point has a compact neighbourhood. Locally compact Hausdorff
spaces can be abbreviated as LCH.

Theorem 2.4. Let X be a LCH space and E ⊂ X, then E is closed if and only
if E ∩K is closed for every compact K ⊂ X.

Proof. Since X is Hausdorff, all compact sets are closed and E ∩K is closed for
all compact sets K.

If E is not closed, then there exists an accumulation point x ∈ E \E of E. Let
K be a compact neighbourhood of x, then x is an accumulation point of E ∩K,
not in E ∩K. Therefore E ∩K is not closed.



2.2. LCH SPACES 27

Theorem 2.5. Let X be a LCH space, x ∈ X be a point and U ∈ N (x)o be an
open neighbourhood of x, then there exists a compact neighbourhood N ∈ N (x)
such that x ∈ N ⊂ U .

Proof. Suppose that U is compact, then in the relative topology there exists
disjoint open sets V and W such that x ∈ V and ∂U ⊂ W . This gives V ⊂
W c ⊂ U and as U is compact, so is V in the relative topolology. Since U is
closed in X, V is also closed in X and therefore compact.

If U is not compact, take a compact neighbourhood N ∈ N (x) and replace U
with U ∩No.

Theorem 2.6. Let X be a LCH space and K ⊂ U ⊂ X where K is compact
and U is open. Then there exists a precompact V such that K ⊂ V ⊂ V ⊂ U .

Proof. For any x ∈ K, let Nx be a compact neighbourhood of x such that
x ∈ Nx ⊂ U . Then {Uox}x∈K is an open cover of K, and has a finite subcover

{Ui}n1 . Let V =
⋃n
i=1 Ui, then V =

⋃n
i=1 Ui ⊂ U is a finite union of compact

sets, and therefore compact.

Theorem 2.7 (Urysohn’s Lemma, LCH Version). Let X be a LCH space and
K ⊂ U ⊂ X where K is compact and U is open. Then there exists a continuous
function f ∈ C(X, [0, 1]) such that f = 1 on K and 0 outside of a compact
subset of U .

Therefore all LCH spaces are completely regular.

Proof. Let V be a precompact open neighbourhood of K with K ⊂ V ⊂ V ⊂ U .
Then V is a compact Hausdorff space, and therefore normal. SinceK is compact
in X, it is also compact in V and is closed.

By Urysohn’s Lemma, there exists f ∈ C(V , [0, 1]) that is 1 on K and 0 on ∂V .
Extend f to X by setting it to 0 on V

c
and denote the extension as F . Let

E ⊂ [0, 1] be closed, then

F−1(E) = f−1(E) ∪ (F |V c)
−1

(E)

If 0 ̸∈ E, then F−1(E) = f−1(E) is closed. If 0 ∈ E, then F−1(E) = f−1(E) ∪
V
c
. As f−1(0) ⊃ ∂V ,

F−1(E) = f−1(E) ∪ V c = f−1(E) ∪ V c

which is closed. Therefore f is continuous.

Theorem 2.8 (Tietze Extension Theorem, LCH version). Let X be a LCH
space and K ⊂ X be compact. If f ∈ C(K) is a continuous function, then
there exists F ∈ C(K) such that F |K = f . Moreover, F can be taken to vanish
outside of a compact set.
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Proof. Let V be a precompact open neighbourhood of K such that K ⊂ V ⊂ V ,
then V is compact and normal. As K is compact in a compact Hausdorff space
V , K is closed.

By the Tietze Extension Theorem, there is an extension F of f in V . Moreover,
in the construction of ϕ in the proof, we can take B′ = B ∪ ∂V , which is still
closed, and does not influence the approximation. Therefore we can take F to
be 0 outside of V .

Similar to Urysohn’s Lemma, we can decompose any preimage

F−1(E) = F |−1

V
(E) ∪ V c = F |−1

V
(E) ∪ V c

with the V c being optional. This way, the preimage of every closed set is
closed, and the preimage of every open set is open. Therefore the extension is
continuous.

Theorem 2.9. Let X be a LCH space, then the space C0(X) of functions that
vanishes at infinity is the closure of the space Cc(X) of compactly supported
functions with respect to the uniform norm.

Proof. Let {fn}∞1 ⊂ Cc(X) such that fn → f uniformly, then for all ε > 0
there exists n ∈ N such that ||fn − f || < ε. As a result, for any x ̸∈ supp (fn),
|f(x)| < ε and {x : |f(x)| ≥ ε} ⊂ supp (fn) is a closed subset of a compact set,
and therefore compact. So Cc(X) ⊂ C0(X).

Now let f ∈ C0(X) and n ∈ N with Kn = {x : |f(x)| ≥ 1/n}, then Kn is
compact. By the LCH version of Urysohn’s Lemma, there is an extension of
f to a continuous function gn that is 1 on Kn and 0 outside of some compact
neighbourhood Vn of Kn. Take fn = fgn, then fn ∈ C0(X) vanishes outside of
Vn with

||fn − f || = ||f(1− gn)|| ≤
∣∣∣∣f · χKc

n

∣∣∣∣ < 1

n

so fn → f uniformly.

Theorem 2.10. Let X be a LCH space, then the space of continuous functions
C(X) is a closed subspace of CX under the topology of uniform convergence on
compact sets.

Proof. Let f ∈ C(X), then f is an adherent point of C(X), and cannot be
separated from elements of C(X) with the uniform norm on compact sets.

Let K ⊂ X be compact, then for any n ∈ N,

∃fn ∈ C(X) : sup
x∈K

|fn(x)− f(x)| < 1

n

meaning that fn|K → f |K uniformly, and f is continuous on K.
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Let x ∈ X and K ∈ N (x) be a compact neighbourhood, then f is continuous
on K. Since for any neighbourhood E of f(x), f−1(E) is a neighbourhood of x
in K, and f−1(E)o ∩Ko is an open neighbourhood of x in X. Therefore f is
continuous at x.

As f is continuous at x for all x ∈ X, f is continuous.

2.3 σ-Compact LCH Spaces

Theorem 2.11. Let X be a separable LCH space, then X is σ-compact.

Proof. Let {xn}∞1 ⊂ X be a countable dense subset, and let Kn ∈ N k(x), then
Kn is compact and X =

⋃
n∈NKn.

Theorem 2.12. Let X be a σ-compact LCH space, then there is a sequence
{Ui}∞1 of precompact open sets such that Un ⊂ Un+1 and X =

⋃
i∈N Ui.

Proof. Let X =
⋃
n∈NKn be where each Kn is compact.

Let U1 ∈ N (K1)
o be a precompact open neighbourhood of K1. For any n ∈ N,

take a precompact open neighbourhood,

Un ∈ N

(
Kn ∪

n−1⋃
i=1

Ui

)o

then each Un ⊃
⋃n−1
i=1 Ui = Un−1 and

⋃
n∈N Un = X.

Theorem 2.13. Let X be a σ-compact LCH space and {Un}∞1 be a sequence
of precompact open sets such that Un ⊂ Un+1 for all n and

⋃
n∈N Un = X, then

E =

{{
g ∈ CX : sup

x∈Um

|f(x)− g(x)| < 1

n

}∣∣∣∣∣m,n ∈ N

}

is a neighbourhood base for f ∈ CX in the topology of uniform convergence on
compact sets.

Hence, this topology is first countable with fn → f if and only if fn → f
uniformly on every Un.

Proof. Neighbourhood Reduction

Denote the generating sets of the topology as

BK(f, n) =

{
g ∈ CX : sup

x∈K
|g(x)− f(x)| < 1

n

}
then for any U ∈ N (f)o, there exists K compact and n ∈ N such that f ∈
BK(f, n) ⊂ U .
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Proof. Suppose that BK(g, n) ∈ N (f)o is an open neighbourhood of f , then
there exists m ∈ N such that f ∈ BK(f,m) ⊂ BK(g, n) and we can assume that
neighbourhoods in the generating set are ”centred” at f .

Let U ∈ N (f)o be an open neighbourhood of f , then it contains a finite inter-
section of of the generating sets

⋂n
i=1BKi(gi, ni), where each Ki is compact,

and BKi(gi, ni) is an open neighbourhood of f . Therefore we can write

f ∈
n⋂
i=1

BKi(f,mi) ⊂
n⋂
i=1

BKi(gi, ni)

where taking K =
⋃n
i=1Ki and m = maxni=1mi yields

n⋂
i=1

BKi
(f,mi) ⊃

n⋂
i=1

BKi
(f,m) = BK(f,m)

and K is compact since it is a finite union of compact sets.

Therefore any open neighbourhood U can be reduced to BK(f,m) with f ∈
BK(f,m) ⊂ U where m ∈ N and K compact.

Compactness Reduction

Let {Un}∞1 be a sequence of precompact open sets such that Un ⊂ Un+1 for all
n ∈ N and

⋃
n∈N Un = X. Then for any compact set K there exists j ∈ N such

that Uj ⊃ K.

Proof. Since
⋃
n∈N Un = X, {Un}∞1 forms an open cover of K, there exists a

finite subcover {Uj}j∈J with J ⊂ N finite. Let j = max(J), as Uj ⊃ Uk for
all j ≤ j, Uj ⊃ K. Therefore for any K compact there exists j ∈ N such that
Uj ⊃ K.

Neighbourhood Base

The collection
E(f) = {BK(f, n) : n ∈ N}

forms a neighbourhood base for T at f .

Proof. Let U ∈ N (f)o, then there exists BK(f, n) such that f ∈ BK(f, n) ⊂ U .
Since K is compact, there exists precompact Uj such that Uj ⊃ K. Take
BUj

(f, n) ∈ E(f), then

f ∈ BUj
(f, n) ⊂ BK(f, n) ⊂ U

Therefore E(f) forms a neighbourhood base at f .

Theorem 2.14. Let (X, T ) be a σ-compact LCH space, then X is paracompact.

Proof. Let {Un}∞1 be a sequence of precompact open sets such that Un ⊂ Un+1

and
⋃
n∈N Un = U . Let U be n ∈ N, then

Vn =
{
E ∩ (Un+2 \ Un−1) : E ∈ U

}
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is an open cover of Un+1 \ Un. As Un+1 \ Un is compact, Vn has a finite
subcover Vn. Let V =

⋃
n∈N Vn, then V is a refinement of U , and for any

point x ∈ Un \ Un−1, only sets in Vn can contain x. Therefore V is locally
finite.
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Chapter 3

Functional Analysis

3.1 Topological Vector Spaces

Definition 3.1 (Topological Vector Space). Let X be a vector space over F =
R|C, equipped with a topology T . X is a topological vector space if the maps

X × X → X (x, y) 7→ x+ y

and
F ×X → X (λ, x) 7→ λx

are continuous.

Definition 3.2 (Complete TVS). Let X be a topological vector space. X is
complete if every Cauchy net in X converges.

Theorem 3.1. Let {pi}i∈I be a family of seminorms, take

Uxiε = {y ∈ X : pi(x− y) < ε}

Let
E = {Uxiε : x ∈ X , i ∈ I, ε > 0}

and T = T (E) be the weak topology generated by the norms. Then

1. For any x ∈ X , the collection of finite intersections of Ex = {Uxiε : i ∈ I, ε > 0}
is a neighbourhood base at x.

2. If ⟨xα⟩α∈A is a net in X , then xα → x if an only if pi(xα−x) → 0 for all
i ∈ I.

3. (X , T ) is a locally convex topological vector space.

Proof. Centre Reduction

Let Uyiε ∈ E and x ∈ Uyiε, then there exists δ > 0 such that Uxiδ ⊂ Uyiε.

33
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Proof. Let δ < ε− pi(y − x), then for all z ∈ Uxiδ,

pi(y − z) ≤ pi(y − x) + pi(z − x) < ε

and Uxiδ ⊂ Uyiε.

Intersection Reduction (Same Norm)

Let Uxiε, Uyiδ ∈ E such that Uxiε ∩Uyiδ ̸= ∅, then for any z ∈ Uxiε ∩Uyiδ, there
exists γ > 0 such that Uziγ ⊂ Uxiε ∩ Uyiδ.
Proof. Let γ < min(ε− pi(x− z), δ− pi(y− z)), then Uziγ ⊂ Uxiε from the first
term, and Uziγ ⊂ Uyiδ from the second.

Intersection Reduction (Different Norms)

Let {Uxk,ik,εk}
n
1 ⊂ E be a finite sequence of sets such that

⋂n
k=1 Uxk,ik,εk ̸=

∅. Then for any x ∈
⋂n
k=1 Uxk,ik,εk , there exists {Ux,jk,δk}

m
1 ⊂ Ex such that⋂m

k=1 Ux,jk,δk ⊂
⋂n
k=1 Uxk,ik,εk and the jks are distinct.

Proof. If there exists k, k′ such that ik = ik′ , then there exists x′ ∈ Uxkikεk ∩
Uxk′ ikεk′ and ε′ > 0 such that Ux′ikε′ ⊂ Uxkikεk ∩ Uxk′ ikεk′ . Replace the two
balls with Ux′ikε′ , then the new intersection is contained in the old intersection.
Repeat this process until the jks are distinct.

Now suppose that the iks are distinct, then for each Uxk,ik,εk choose Ux,ik,δk ⊂
Uxk,ik,εk , then

⋂n
k=1 Ux,ik,δk ⊂

⋂n
k=1 Uxk,ik,εk .

Neighbourhood Base

Let U ∈ T , then U is a union of finite intersections of E sets. If x ∈ U , then
there exists {Uxk,ik,εk}

n
1 ⊂ E such that

x ∈
n⋂
k=1

Uxk,ik,εk ⊂ U

Since there exists {Ux,jk,δk}
m
1 ⊂ Ex such that

x ∈
m⋂
k=1

Ux,jk,δk ⊂
n⋂
k=1

Uxk,ik,εk ⊂ U

the collection of finite intersections of Ex sets forms a neighbourhood base at x.

Net

If ⟨xα⟩α∈A is a net in X , then xα → x if an only if pi(xα − x) → 0 for all i ∈ I.

Proof. Suppose that pi(xα − x) → 0 for all i ∈ I. Let U ∈ T , then there exists
{Ux,ik,δk}

m
1 ⊂ Ex such that

⋂m
k=1 Ux,jk,δk ⊂ U . Since pi(xα − x) → 0, there

exists αk for each k such that pi(xαk
− x) < δk. Choose α such that α ≳ ak for

all k, then pi(xα − x) < δk for all k, and xα → x.

Suppose that xα → x, and fix i ∈ I. Then for all ε > 0, there exists α ∈ A such
that xβ ∈ Uxiε for all β ≳ α.
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Intersection Reduction

Let X be a vector space. If C,D ⊂ X are convex, then C ∩D is also convex.

Proof. Let x, y ∈ C ∩D, then

{tx+ (1− t)y : t ∈ [0, 1]} ⊂ C,D

Therefore C ∩D is also convex.

Convex ”Balls”

Let X be a vector space and p be a seminorm. Then sets of the form

U(x, ε) = {y ∈ X : p(x− y) < ε} x ∈ X , ε > 0

are convex.

Proof. Let x, y ∈ U(x, ε), then

p(tx+ (1− t)y) ≤ tp(x) + (1− t)p(y)

< tε+ (1− t)ε

= ε

Therefore {tx+ (1− t)y : t ∈ [0, 1]} ⊂ U(x, ε).

Convex Base

The collection of finite intersections of

E = {Uxiε : x ∈ X , i ∈ I, ε > 0}

forms a base of T consisting of convex sets.

Proof. Since finite intersections of Ex forms a neighbourhood base at x, and
Ex ⊂ E for all x ∈ X , the finite intersections of E sets is a base for T .

Let {Uxk,ik,εk}
n
1 ⊂ E , then since each Uxk,ik,εk is convex,

⋂n
k=1 Uxk,ik,εk is also

convex. Therefore finite intersections of E sets consists of convex sets.

Topological Vector Space

Let ϕ : X 2 → X by (x, y) 7→ x+ y, then ϕ is continuous.

Proof. Let U ∈ N (x+y)o, then there exists {Ux+y,ik,εk}
n
1 such that

⋂n
k=1 Ux+y,ik,εk ⊂

U .

Fix i ∈ I and ε > 0, and consider Ux+y,i,ε, then Ux,i,ε/2 × Uy,i,ε/2 is open in X
where for all (x′, y′) ∈ Ux,i,ε/2 × Uy,i,ε/2,

pi((x
′ + y′)− (x+ y)) ≤ pi(x

′ − x) + pi(y
′ − y)

< ε/2 + ε/2 = ε

and we have found Ux,i,ε/2×Uy,i,ε/2 ∈ N ((x, y))o such that Ux,i,ε/2×Uy,i,ε/2 ⊂
ϕ−1(Ux+y,i,ε).
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Now, since for all Ux+y,i,ε, there exists f−1(Ux+y,i,ε) ∈ N ((x, y)),

f−1

(
n⋂
k=1

Ux+y,ik,εk

)
=

n⋂
k=1

f−1(Ux+y,ik,εk) ∈ N ((x, y))

Theorem 3.2. Let X and Y be TVSs with topologies induced by the families of
seminorms {pi}i∈I and {qj}j∈J . A linear map T : X → Y is continuous if and

only if for every j ∈ J , there exists {ik}n1 and C such that

qj(Tx) ≤ C

n∑
k=1

pik(x) ∀x ∈ X

Proof. Forward

Relate the open unit ball with respect to a given norm in Y to an intersection of
open balls in X . Scale vectors in X such that they fit into the ball to establish
the inequality.

Suppose that T is continuous, then for every j ∈ J , there exists {ik}n1 and C
such that

qj(Tx) ≤ C

n∑
k=1

pik(x) ∀x ∈ X

Proof. Let j ∈ J , then U0,j,1 is open in Y and T−1(U0,j,1) is open in X . Since
there exists {U0,ik,εk}

n
1 such that

⋂n
k=1 U0,ik,εk ⊂ T−1(U0,j,1).

Let ε < εk for all k, then
⋂n
k=1 U0,ik,ε ⊂ T−1(U0,j,1). Let x ∈ X . If

∑n
k=1 pik(x) >

0, take y = ε∑n
k=1 pik (x)

· x, then

pil (y) =
εpil(x)∑n
k=1 pik(x)

≤ ε ∀l ∈ [1, n]

meaning that y ∈
⋂n
k=1 U0,ik,ε and

qj(Tx) =

∑n
k=1 pik(x)

ε
· ε∑n

k=1 pik(x)
· qj(Tx)

=

∑n
k=1 pik(x)

ε
· qj (Ty)

≤ 1

ε

n∑
k=1

pik(x)

Backward
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Suppose that for every j ∈ J , there exists {ik}n1 and C such that

qj(Tx) ≤ C

n∑
k=1

pik(x) ∀x ∈ X

then T is continuous.

Proof. Let ⟨xα⟩α∈A be a net converging to x. Then pi(xα−x) → 0 for all i ∈ I.
Since for each j ∈ J we can bound qj(Tx) with a finite sum of pis,

qj(Txα − Tx) ≤ C

n∑
k=1

pik(xα − x) → 0

we have qj(Txα − Tx) → 0 for all j ∈ J , and Txα → Tx.

Theorem 3.3. Let X be a vector space equipped with the topology defined by a
family {pi}i∈I of seminorms.

1. X is Hausdorff if and only if for each x ̸= 0 there exists i ∈ I such that
pi(x) ̸= 0.

2. If X is Hausdorff and I is countable, then X is metrisable with a translation-
invariant metric.

Proof. Hausdorff

X is Hausdorff if and only if for each x ̸= 0 there exists i ∈ I such that pi(x) ̸= 0.

Proof. Suppose that X is Hausdorff, then for any x ∈ X there exists U ∈ N (x)o

and V ∈ N (0)o such that U ∩ V = ∅. Since U is open, there exists {Uxikεk}
n
1

such that x ∈
⋂n
k=1 Uxikεk ⊂ U . As the intersection does not contain 0, there

exists k such that 0 ̸∈ Uxikεk , therefore pik(x− 0) = p(ik)(x) > εk > 0.

Suppose that for each x ̸= 0 there exists i ∈ I such that pi(x) ̸= 0. Let
x, y ∈ X : x ̸= y, then there exists i ∈ I such that pi(x − y) ̸= 0. Let
ε < pi(x− y)/2, then U = Uxiε and V = Uyiε are disjoint open neighbourhoods
that separate x and y.

Translation-Invariant Metric

If X is Hausdorff and I is countable, index the seminorms with N and define

ρ(x, y) =
∑
n∈N

2−nϕ(pn(x− y))

where

ϕ(t) =

{
t

1+t t <∞
1 t = ∞

then ρ is a translation-invariant metric on X .

Metric
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ρ is a metric on X .

Proof. Let x, y ∈ X . If x = y, then pn(x− y) = 0 for all n ∈ N, and ρ(x, y) = 0.
If x ̸= y, then there exists n ∈ N such that pn(x − y) > 0, meaning that
ρ(x, y) > 0.

Let x, y, z ∈ X , then

ρ(x, z) =
∑
n∈N

2−nϕ(pn(x− z))

≤
∑
n∈N

2−nϕ(pn(x− y) + pn(y − z))

≤
∑
n∈N

2−n [ϕ(pn(x− y)) + ϕ(pn(y − z))]

=
∑
n∈N

2−nϕ(pn(x− y)) +
∑
n∈N

2−nϕ(pn(y − z))

= ρ(x, y) + ρ(y, z)

and ρ satisfies the triangle inequality.

Lastly, let x, y ∈ X , then

ρ(x, y) =
∑
n∈N

2−nϕ(pn(x, y))

=
∑
n∈N

2−nϕ(pn(y − x))

= ρ(y, x)

Therefore ρ is a metric.

Translation-Invariant

Let x, y, z ∈ X , then ρ(x, y) = ρ(x+ z, y + z).

Proof.

ρ(x, y) =
∑
n∈N

2−nϕ(pn(x− y))

=
∑
n∈N

2−nϕ(pn(x+ z − (y + z)))

= ρ(x+ z, y + z)

Metrisable

If X is Hausdorff and I is countable, then ρ defined above induces the same
topology as the topology defined by the seminorms.

Notations
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Denote TS as the topology defined by the seminorms, and Tρ be the topology
induced by the metric.

Let

B(x, n, r) = {y ∈ X : pn(x− y) < r}

and

B(x, r) = {y ∈ X : ρ(x, y) < r}

Metric Generates Seminorm Topology

Let x ∈ X , n ∈ N, and r > 0, then there exists ε > 0 such that B(x, ε) ⊂
B(x, n, r).

From this, for each y ∈ B(x, n, r), there exists ry and εy such that B(y, εy) ⊂
B(y, n, ry) ⊂ B(x, n, r) and

B(x, n, r) =
⋃

y∈B(x,n,r)

B(y, εy)

Therefore B(x, n, r) ∈ Tρ and TS ⊂ Tρ.

Proof. Let ε < 2−nϕ(r), then when ρ(x, y) < ε,

ρ(x, y) < ε∑
k∈N

2−kϕ(pk(x− y)) < 2−nϕ(r)

2−nϕ(pn(x− y)) < 2−nϕ(r)

pn(x− y) < r

Therefore B(x, ε) ⊂ B(x, n, r).

Seminorms Generate Metric Topology

Let x ∈ X and r > 0, then there exists n ∈ N and ε > 0 such that B(x, n, ε) ⊂
B(x, r).

From this, for each y ∈ B(x, r), there exists ry, ny, and εy such thatB(y, ny, εy) ⊂
B(y, ry) ⊂ B(x, r) and

B(x, r) =
⋃

y∈B(x,r)

B(y, ny, εy)

Proof. Let n ∈ N such that 2−n < r/2. Let ε > 0 such that

n∑
k=1

2−kϕ(ε) < r/2
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Then for all y ∈ B(x, n, ε),

ρ(x, y) =
∑
k∈N

2−kϕ(pk(x− y))

=

n∑
k=1

2−kϕ(pk(x− y)) +
∑
k>n

2−kϕ(pk(x− y))

≤
n∑
k=1

2−kϕ(pn(x− y)) +
∑
k>n

2−k

<

n∑
k=1

2−kϕ(ε) +
∑
k>n

2−k

< r/2 + r/2 = r

Therefore B(x, n, ε) ⊂ B(x, r).

3.2 Affine Hyperplanes

Definition 3.3 (Affine Hyperplane). Let X be a normed vector space, an affine
hyperplane is a set of the form

H = [f = α] = f−1(α)

where f : X → R is a linear functional that does not vanish identically.

Theorem 3.4. The hyperplane [f = α] is closed if and only if f is continuous.

Proof. Forward

Suppose that f is continuous, then for any convergent sequence {xi}∞1 ⊂ [f = α]
with xi → x, f(xi) → f(x) = α, and [f = α] is closed.

Backwards

Leveraging the linearity of f , if the plane is closed, then we can find a convex
neighbourhood above/under the plane for any point outside of it. If any point
in there were to have a value ”past the plane”, then we can find somewhere in
between that should be in the plane. However, the neighbourhood is supposed
to be above/under the plane. Therefore this cannot happen.

Once we have continuity at one point on the linear functional, we can translate
it back to the origin by simply shaving off the value of f at that point.

Now suppose that [f = α] is closed. As f does not vanish identically, [f = α]c ̸=
∅. Let x ∈ [f = α]c and suppose that f(x) < α, then there exists ε > 0 such
that B(x, ε) ⊂ [f = α]c.

We claim that f(y) < α for all y ∈ B(x, ε). Suppose that there exists z ∈ B(x, ε)
such that f(z) > α, then in the line segment

{(1− t)x+ tz : t ∈ [0, 1]} ⊂ B(x, ε)
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there exists t ∈ [0, 1] such that f((1− t)x+ tz) = α, namely

t =
α− f(x)

f(z)− f(x)

which is in [0, 1] since 0 ≤ α − f(x) ≤ f(z) − f(x). This contradicts the fact
that B(x, ε) ⊂ [f = α]c. Therefore f(z) < α for all z ∈ B(x, ε).

Let x ∈ [f = α]c such that f(x) < α and ε > 0 such that B(x, ε) ⊂ [f = α]c.
Let y ∈ B(x, ε), then y = x+ y′. Since

f(x+ y′) = f(x) + f(y′)

f(y′) < α− f(x)

|f(y′)| < α− f(x)

we have
|f(x+ y′)| ≤ |f(x)|+ |y′| < |f(x)|+ |α− f(x)|

and f is bounded on B(x, ε). Since f is bounded on an open set, f is continuous.

Definition 3.4 (Separation). Let A,B ⊂ X be two subsets. The hyperplane
[f = α] separates A and B if

f(x) ≤ α∀x ∈ A f(x) ≥ α∀x ∈ B

and strictly separates A and B if there exists some ε > 0 such that

f(x) ≤ α− ε∀x ∈ A f(x) ≥ α+ ε∀x ∈ B

Definition 3.5 (Gauge). Let X be a normed space and C ⊂ X be an open
convex set with 0 ∈ C. For every x ∈ X define

p(x) = inf
{
α > 0 :

x

α
∈ C

}
as the gauge of C. Then

1. p is a sublinear functional.

2. There exists M ≥ 0 such that 0 ≤ p(x) ≤M ||x|| for all x ∈ X .

3. C = {x ∈ X : p(x) < 1}.

Proof. (1, linear) First let λ > 0, and x ∈ X , then

λ
{
α > 0 :

x

α
∈ C

}
=
{
λα > 0 :

x

α
∈ C

}
=

{
λα > 0 :

λx

λα
∈ C

}
=

{
α > 0 :

λx

α
∈ C

}
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therefore p(x) = λp(x).

(2) Since C is open, we can find a neighbourhood centred at 0 such that any
vectors of a certain length will be inside C. Using this we can create an upper
bound on the scale-down factor in terms of ||x||.

Let r > 0 such that B(0, r) ⊂ C, then r x
||x|| ∈ C for any x ̸= 0, and we have

p(x) ≤ 1

r
||x|| ∀x ∈ E

(3) Let x ∈ C, then since C is open ∃ε > 0 : B(x, ε) ⊂ C. Choose δ > 0 such
that (1 + δ) ||x|| < ||x||+ ε, then (1 + δ)x ∈ C and p(x) ≤ 1

1+δ < 1.

Figure 3.1: Scaling Vectors into C

(1, sublinear) Let x, y ∈ X and α, β > 0 be estimates of p(x) and p(y) such

that x
α and y

β are in C. As C is convex, txα + (1−t)y
β ∈ C for all t ∈ [0, 1]. Let

t0 ∈ [0, 1] such that
x+ y

α+ β
=
t0x

α
+

(1− t0)y

β

then x+y
α+β ∈ C, and α + β ≥ p(x + y). Since this holds for all α > p(x) and

β > p(y), p(x+ y) ≤ p(x) + p(y).

3.3 Hahn-Banach Theorem

Theorem 3.5 (Hahn-Banach Theorem, Analytic Form). Let X be a vector
space over R, p a sublinear functional on X . Let M be a subspace on X , and f
be a linear functional on M such that f(x) ≤ p(x) for all x ∈ M. Then there
is an extension F of f on X such that F (x) ≤ p(x) for all x ∈ X .
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Proof. Single-Dimensional Extensions

First let x ∈ X \ M, then Rx ∩ M = {0} and any vector y ∈ Rx + M can
be written uniquely as λx + m for some λ ∈ R and m ∈ M. Given a linear
functional f on M, f can be extended to be a linear functional g on Rx +M
by

gα(y) = gα(λx+m) = λα+ f(m) α ∈ R

where g|M = f .

Bounded by Sublinear Functional

Let x ∈ X \M and gα : Rx+M with λx+m 7→ λα+ f(m). Then there exists
an α ∈ R such that gα(y) ≤ p(y) for all y ∈ X .

Proof. Let y1, y2 ∈ M, then

f(y1) + f(y2) ≤ p(y1 + y2) ≤ p(y1 − x) + p(y2 + x)

and
f(y1)− p(y1 − x) ≤ p(y2 + x)− f(y2)

meaning that

sup
y∈M

[f(y)− p(y − x)]︸ ︷︷ ︸
a

≤ inf
y∈M

[p(y + x)− f(y)]︸ ︷︷ ︸
A

Let α ∈ [a,A], then for any λ > 0 and y ∈ M, using the fact that α ≤ A,

gα (λx+ y) = λα+ f(y)

= λ
[
α+ f

( y
λ

)]
≤ λ

[
p
( y
λ
+ x
)
− f

( y
λ

)
+ f

( y
λ

)]
= λp

( y
λ
+ x
)

= p(y + λx)

Now let λ = −µ < 0, then using the fact that α ≥ a,

gα(λx+ y) = f(y)− µα

=
1

µ

[
f

(
y

µ

)
− α

]
≤ 1

µ

[
f

(
y

µ

)
− f

(
y

µ

)
+ p

(
y

µ
− x

)]
=

1

µ
p

(
y

µ
− x

)
= p(y − µx)

= p(y + λx)
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and we have gα(λx+ y) ≤ p(λx+ y) for any λ ∈ R and y ∈ M.

Union of Subspaces

Let
F = {g : X → R : g|M = f, g(x) ≤ p(x) ∀x}

be the family of all linear extensions of f to subspaces of X that are bounded
by p. Order F by g ≤ h if h is an extension of g, then ≤ is a partial order.

Let C be a chain in F . Denote Dom(g) as the domain of g, and let

N =
⋃
g∈C

Dom(g)

then N is a subspace of M: For any x, y ∈ N and λ ∈ R, there exists g1, g2 ∈ C
such that x ∈ Dom(g1), y ∈ Dom(g2). Since C is a chain, assume without loss of
generality that g1 ≤ g2, then Dom(g2) ⊃ Dom(g1) and λx, x+y ∈ Dom(g1) ⊂ N .

Maximal Extension

Let x ∈ N , then there exists g ∈ C such that x ∈ Dom(g). Define F (x) = g(x).
First verify that F is well-defined: let g1, g2 ∈ C such that x ∈ Dom(g1),Dom(g2).
Since C is a chain, assume without loss of generality that g1 ≤ g2, then g2 is an
extension of g1 and g1(x) = g2(x). Therefore the value of F on x is independent
of the choice of g.

Now, let x, y ∈ N and λ ∈ R, then there exists g1, g2 ∈ C such that x ∈ Dom(g1)
and y ∈ Dom(g2). Assume again that g2 ≥ g1, and we have

F (λx+ y) = g2(λx+ y)

= λg2(x) + g2(y)

= λF (x) + F (y)

F (x) = g2(x) ≤ p(x)

that F ∈ F being an upper bound of C.

Since every chain C in F has an upper bound, by Zorn’s Lemma, F has a
maximal element F . If Dom(F ) ⊊ X , then F can be extended to Dom(F )+Rx
for some x ∈ X \ Dom(F ), which contradicts the fact that F is a maximal
element of F . Therefore Dom(F ) = X , and F is an extension of f such that
F (x) ≤ p(x) for all x ∈ X .

Theorem 3.6. Let X be a real vector space, ||·|| be a seminorm on X , M be a
subspace of X , and f be a linear functional on M such that |f(x)| ≤ ||x|| for all
x ∈ M. Then there is a linear extension F of f to X such that |F (x)| ≤ ||x||
for all x ∈ X .

Proof. Let x ∈ X , then

f(x) ≤ ||x|| ⇔ f(−x) ≤ ||x|| ⇔ |f(x)| ≤ ||x||
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Since the seminorm is sublinear, applying the Hahn-Banach theorem yields the
desired extension.

Theorem 3.7 (Complex Version). Let X be a complex vector space, p a semi-
norm on X , M a subspace of X , and f a complex linear functional on M such
that |f(x)| ≤ p(x) for x ∈ M. Then there exists an extension F of f to X such
that |F (x)| ≤ p(x) for all x ∈ X .

Proof. Let u = Re (f), then there is a linear extension U of u to X with |U(x)| ≤
p(x). Let F = U(x)−iU(ix), then F is a linear extension of f . For any non-zero
x ∈ X , let α = sgnF (x), then

F (x) = F (αx) = αF (x) = U(x) ≤ p(x)

Theorem 3.8. Let X be a normed space over C, then

1. If M is a closed subspace of X and x ∈ X \M, there exists f ∈ X ∗ such
that f(x) ̸= 0 and f |M = 0.

2. If δ = infy∈M ||x− y||, then f can be taken to satisfy ||f || = 1 and f(x) =
δ.

3. If x ∈ X \{0}, then there exists f ∈ X ∗ such that ||f || = 1 and f(x) = ||x||.
4. The bounded linear functionals on X separate points.

5. If x ∈ X , define x̂ : X ∗ → C by x̂(f) = f(x). Then the map x 7→ x̂
is a linear isometry from X to X ∗∗. Moreover, the closure of its image
X̂ = {x̂ : x ∈ X} is a Banach space, known as the completion of X . If

X is already a Banach space, then X̂ = X̂ .

Proof. Point Indicator

Let M be a closed subspace of X and x ∈ X \ M, then since M is closed,
δ = infy∈M ||x− y|| > 0.

Define f : M+ Cx→ C by m+ λx 7→ λδ, then since for any λ ̸= 0,

|f(m+ λx)| = |λ| δ ≤ |λ| ||x+ y|| ∀y ∈ M

|λ| δ ≤ |λ|
∣∣∣∣∣∣x+

m

λ

∣∣∣∣∣∣
|λ| δ ≤ ||λx+m||

f is a bounded linear functional on M+ Cx.

Extend f to F on X using the Hahn-Banach theorem with p(y) = ||y||, then
F (y) ≤ ||y|| implies that ||F || ≤ 1. For any ε > 0, there exists y ∈ M such that
||x− y|| < δ + ε, in which case

F (x− y)

||x− y||
>

δ

δ + ε
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where sending ε→ 0 yields δ/(δ − ε) → 1. Therefore ||f || ≥ 1.

Setting M = {0} yields the second result.

Separating Points

Let x, y ∈ X , x ̸= y, then there exists a continuous indicator functional on X
such that f(x− y) ̸= 0. Therefore f(x) ̸= f(y) and X ∗ separates points.

Completion

Let x ∈ X and define x̂ : X ∗ → C by f 7→ f(x), then the map ϕ : X → X ∗∗

where x 7→ x̂ is a linear isometry. Moreover, the closure of its image X̂ =

{x̂ : x ∈ X} is a Banach space. If X is already a Banach space, then X̂ = X̂ .

Proof. Let λ ∈ C and x, y ∈ X , then(
λ̂x+ y

)
(f) = f(λx+ y) = λf(x) + f(y) = λx̂(f) + ŷ(f)

and f is linear. Now let x ∈ X , then

||x̂|| = sup
||f ||=1

|f(x)| ≤ ||x||

and since there exists f ∈ X ∗ such that f(x) = 1, ||x̂|| = ||x||.

Since X ∗∗ = L(X ∗,C) and C is complete, X ∗∗ is also complete. As X̂ is closed,

X̂ is also complete.

Lastly, suppose that X is a Banach space and let {xn}∞1 be a Cauchy sequence

in X , then since the natural map x 7→ x̂ is continuous, ̂limn→∞ xn = limn→∞ x̂n.
Therefore X̂ is complete.

Theorem 3.9 (Separation of Points and Open Convex Sets). Let C ⊂ X be a
non-empty open convex set and x ̸∈ C. Then there exists a continuous linear
functional f ∈ X ∗ such that f(y) < f(x) for all y ∈ C. In other words,
[f = f(x)] separates {x} and C.

Proof. The gauge serves to separate points inside the set from ones outside of
it. Extending an indicator function for a point outside of C using the gauge as
a constraint allows the function to also separate the point from C.

First suppose that 0 ∈ C, and let g : Rx → R with tx 7→ t, then since x ̸∈ C,
p(x) > 1, and g(tx) = t ≤ tp(x) = p(tx). By the Hahn-Banach theorem, there
is an extension f of g to X such that f(x) = 1 and f(y) ≤ p(y) for all y ∈ X .

As f(y) ≤ p(y) ≤M ||y|| for someM > 0, f is continuous, and [f = 1] is closed.
With f(y) ≤ p(y) < 1 for all y ∈ C, [f = 1] is a closed hyperplane that separates
x and C.

Suppose that 0 ̸∈ C. Choose any y ∈ C so 0 ∈ C − y. Then there exists
f : X → R such that f(x − y) = 1 and f(z) < 1 for all z ∈ C − y. For any
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z ∈ C,
f(z) = f(z − y) + f(y) < f(x− y) + f(y) = f(x)

and f separates x from C.

Figure 3.2: Separation of an Open Convex Set and a Convex Set

Theorem 3.10 (Hahn-Banach, First Geometric Form). Let X be a normed
space over R and A,B ⊂ X be non-empty convex sets such that A ∩ B ̸= ∅. If
one of them is open, then there exists a closed hyperplane that separates A and
B.

Proof. Let C = A−B, then for any a− b and a′ − b′ in C,

t(a− b) + (1− t)(a′ − b′) = [ta+ (1− t)a′]︸ ︷︷ ︸
∈A

− [tb+ (1− t)b′]︸ ︷︷ ︸
∈B

and since C =
⋃
y∈B(A − y), C is open. The collection of differences being

convex allows it to be separated from 0 with a plane.

As A ∩ B = ∅, 0 ̸∈ C. By the Hahn-Banach theorem, there exists f ∈ X ∗ that
separates C from 0, i.e. f(z) < 0∀z ∈ C. Then

f(z) < f(y) ∀x ∈ A, y ∈ B

Let α ∈ [supx∈A f(x), infy∈B f(y)], then

f(a) < α < f(b) ∀x ∈ A, y ∈ B

and [f = α] separates A from B.

Figure 3.3: Separation of a Compact Convex Set and a Closed Convex Set
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Theorem 3.11 (Hahn-Banach, Second Geometric Form). Let X be a normed
space over R and A,B be disjoint non-empty convex subsets. If A is closed and
B is compact, then there exists a closed hyperplane that strictly separates A and
B.

Proof. Set C = A−B, then C is convex and 0 ̸∈ C.

Let {cn}∞1 ⊂ C be a convergent sequence in C with cn → c, write cn = an − bn
for some an ∈ A and bn ∈ B. Since B is compact, there exists a convergent
subsequence {bnk

}∞1 . This allows a subsequence {cnk
}∞1 with cnk

= ank
− bnk

such that cnk
→ c, bnk

→ b ∈ B, and as addition is continuous, ank
→ a ∈ A.

Therefore there exists a ∈ A and b ∈ B such that c = a+ b, and C is closed.

The convex set being closed allows the existence of an open neighbourhood
that separates 0 from C. This provides ”room” for the function to interpolate
between its value on C and on 0, and allows a strict separation.

Since 0 ̸∈ C, there exists r > 0 such that B(0, r) ⊂ Cc. Let f ∈ X ∗ such that

f(c) ≤ f(rz) ∀c ∈ C, z ∈ B(0, 1)

As f(c) ≤ f(rz) = rf(z) for any z ∈ B(0, 1), f(c) ≤ −r ||f ||. Take ε = 1
2r ||f || >

0, then

f(x− y) ≤ −r ||f ||

f(x) +
1

2
r ||f || ≤ f(y)− 1

2
r ||f ||

f(x) + ε ≤ f(y)− ε

Choose
α ∈ [sup f(x) + ε, inf f(y)− ε]

then the hyperplane [f = α] strictly separates A from B.

3.4 Hilbert Spaces

Definition 3.6 (Pre-Hilbert Space). Let H be a complex vector space. H is a
pre-Hilbert space if it is equipped with an inner product.

Definition 3.7 (Hilbert Space). Let H be a pre-Hilbert space, and define

||x|| =
√

⟨x, x⟩

then ||x|| is a norm on H. If H is complete with respect to ||·||, then H is a
Hilbert space.

Proof. Since ⟨x, x⟩ = 0 if and only if x = 0, ||x|| = 0 if and only if x = 0. Let
λ ∈ C. then

⟨λx, λx⟩ = λλ ⟨x, x⟩ = |λ|2 ⟨x, x⟩
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Now let x, y ∈ H, then

⟨x+ y, x+ y⟩ = ⟨x+ y, x⟩+ ⟨x+ y, y⟩
= ⟨x, x⟩+ ⟨y, x⟩+ ⟨x, y⟩+ ⟨y, y⟩

= ⟨x, x⟩+ ⟨x, y⟩+ ⟨x, y⟩+ ⟨y, y⟩
= ⟨x, x⟩+ 2Re (⟨x, y⟩) + ⟨y, y⟩
≤ ⟨x, x⟩+ 2 |⟨x, y⟩|+ ⟨y, y⟩
≤ ⟨x, x⟩+ 2 ||x|| ||y||+ ⟨y, y⟩
≤ ⟨x, x⟩+ ⟨y, y⟩

Theorem 3.12. Let H be a pre-Hilbert space and {xn}∞1 , {yn}∞1 ⊂ H. If
xn → x and yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩.

Proof.

|⟨xn, yn⟩ − ⟨x, y⟩| = |⟨xn − x, yn⟩+ ⟨x, yn⟩ − ⟨x, y⟩|
= |⟨xn − x, yn⟩+ ⟨x, yn − y⟩|
≤ ||xn − x|| ||yn||+ ||x|| ||yn − y||

which approaches 0 as n→ ∞.

Theorem 3.13 (Projection onto Subspace). Let H be a Hilbert space, and
M ⊂ H be a closed subspace. Let

M⊥ = {x ∈ H : ⟨x, y⟩ = 0 ∀y ∈ M}

be its orthogonal complement, then H = M ⊕ M⊥ is an inner direct sum.
Moreover, when decomposing x ∈ H to y + z where y ∈ M and z ∈ M⊥, y and
z are the unique elements of M and M⊥ whose distance to x is minimal.

Proof. In regular normed spaces, there is no good way of getting a sequence in
M to approach a vector that minimises its distance from x. However, since the
geometry of Hilbert spaces resemble Euclidean spaces thanks to the Pythagorean
theorem and the Parallelogram law (and the space being complete), the exact
vector that minimises distance may be constructed.

Decomposition

Let x ∈ H, then there exists y ∈ M such that

||x− y|| = inf
y′∈M

||x− y′||

Proof. Let x ∈ H, and let δ = infy∈M ||x− y||. Let {yn}∞1 ⊂ M be a sequence
such that ||x− yn|| → δ. By the Parallelogram law,

2 ||yn − x||2 + 2 ||ym − x||2 = ||yn − ym||2 + ||yn + ym − 2x||2
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where since 1
2 (ym + yn) ∈ M,

||yn − ym||2 = 2 ||yn − x||2 + 2 ||ym − x||2 − ||yn + ym − 2x||2

= 2 ||yn − x||2 + 2 ||ym − x||2 − 4

∣∣∣∣∣∣∣∣12(yn + ym)− x

∣∣∣∣∣∣∣∣2
≤ 2 ||yn − x||2 + 2 ||ym − x||2 − 4δ2

As ||yn − x|| ↘ δ, there exists N ∈ N such that ||yn − x|| < δ+ ε for all n ≥ N ,
in which case

2 ||yn − x||2 + 2 ||ym − x||2 − 4δ2 < 4(δ + ε)2 − 4δ2

Therefore ||yn − ym|| is a Cauchy sequence, and as H is complete, yn → y ∈ H.

Orthogonal

Let x ∈ H and y as above, then z = x− y ∈ M⊥.

Proof. Let z′ ∈ M. If ⟨z, z′⟩ ̸∈ R, then ⟨z, sgn(⟨z, z′⟩)z′⟩ ∈ R, so we can assume
that ⟨z, z′⟩ ∈ R. Then the function

f(t) = ||z + tz′||2 = ⟨z, z⟩+ 2t ⟨z, z′⟩+ t2 ⟨z′, z′⟩

has a minimum at t = 0 (because z + tz′ = x − (y − tz′), and y minimises
||x− y||), meaning that f ′(0) = 2 ⟨z, z′⟩ = 0 (bottom of parabola).

Unique

Let x ∈ H and y, z as above, then z is the unique vector in M⊥ and y is the
unique vector in M that minimise distance to x.

Proof. Let z′ ∈ M⊥, then by the Pythagorean theorem

||x− z′||2 = ||x− z||2︸ ︷︷ ︸
=y∈M

+ ||z − z′||2︸ ︷︷ ︸
∈M⊥

≥ ||x− z||2

with equality if and only if z = z′.

Let y′ ∈ M, then by the Pythagorean theorem again,

||x− y′||2 = ||x− y||2︸ ︷︷ ︸
=z∈M⊥

+ ||y − y′||2︸ ︷︷ ︸
∈M

≥ ||x− y||2

with equality if and only if y = y′.

Direct Sum

H = M⊕M⊥

Proof. Since for each x ∈ H there exists y ∈ M and z ∈ M⊥ such that x = y+z,
H = M+M⊥. Let x ∈ M∩M⊥, then ⟨x, x⟩ = 0 and x = 0.
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Definition 3.8 (Orthonormal Basis). Let H be a Hilbert space and {ui}i∈I ⊂ H
be an orthonormal set, then the following are equivalent:

1. Completeness: If ⟨x, ui⟩ = 0 for all i ∈ I, then x = 0.

2. For each x ∈ H, x =
∑
i∈I ⟨x, ui⟩ui, where the sum has countably many

non-zero terms, and converges in the norm topology regardless of the or-
dering.

3. Parseval’s Identity: ||x||2 =
∑
i∈I |⟨x, ui⟩|

2
for all x ∈ H.

An orthonormal set satisfying these properties is an orthonormal basis of H.

Proof. Countable Reduction

Let x ∈ H, then ⟨x, ui⟩ ≠ 0 for only countably many is.

Proof. By Bessel’s inequality, ||x||2 ≥
∑
i∈I |⟨x, ui⟩|

2
and |⟨x, ui⟩|2 is non-zero

for only countably many is.

Evaluating the Sum

Let {un}∞1 be an enumeration of uis where ⟨x, ui⟩ ≠ 0, then

x =

∞∑
n=1

⟨x, un⟩un

Proof. By Bessel’s inequality, the series
∑
n∈N |⟨x, un⟩|2 converges. By the

Pythagorean theorem,∣∣∣∣∣
∣∣∣∣∣
m∑
k=n

⟨x, uk⟩uk

∣∣∣∣∣
∣∣∣∣∣ =

m∑
k=n

|⟨x, uk⟩|2 ≤
∞∑
k=n

|⟨x, uk⟩|2 → 0

the series
∑∞
n=1 ⟨x, un⟩un is Cauchy, and therefore converges. Let y = x −∑∞

n=1 ⟨x, un⟩un, then

⟨y, uj⟩ =

〈
x−

∞∑
n=1

⟨x, un⟩un, uj

〉

= lim
n→∞

〈
x−

n∑
k=1

⟨x, uk⟩uk, uj

〉
= ⟨x, uj⟩ − ⟨⟨x, uj⟩uj , uj⟩ (∀n ≥ j)

= 0

for all j ∈ N and as x,
∑∞
n=1 ⟨x, un⟩un ⊥ ui for all ui ̸∈ {un : n ∈ N}, y ⊥ ui for

all i ∈ I. Therefore y = 0, and x =
∑∞
n=1 ⟨x, un⟩un.

Decomposition to Parseval’s Identity

Suppose that each x ∈ H can be written as
∑
i∈I ⟨x, ui⟩ui, then

||x||2 =
∑
i∈I

|⟨x, ui⟩|2 ∀x ∈ H



52 CHAPTER 3. FUNCTIONAL ANALYSIS

Proof. Let {un}∞1 be an enumeration of uis such that ⟨x, ui⟩ ≠ 0, then

∑
i∈I

|⟨x, ui⟩|2 =
∑
n∈N

|⟨x, un⟩|2 =

∞∑
n=1

|⟨x, un⟩|2

By the Pythagorean theorem,

||x||2 =

∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

⟨x, uk⟩uk

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

⟨x, uk⟩uk

∣∣∣∣∣
∣∣∣∣∣
2

Since x =
∑∞
n=1 ⟨x, un⟩un,

||x||2 −

∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

⟨x, uk⟩uk

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣x−

n∑
k=1

⟨x, uk⟩uk

∣∣∣∣∣
∣∣∣∣∣
2

→ 0

as n→ ∞. Therefore

||x||2 =

∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

⟨x, un⟩un

∣∣∣∣∣
∣∣∣∣∣
2

=

∞∑
n=1

|⟨x, un⟩|2

Parseval’s Identity to Completeness

Suppose that Parseval’s identity holds, then ⟨x, ui⟩ = 0 for all i ∈ I implies that
x = 0.

Proof. Let x ∈ H and suppose that ⟨x, ui⟩ = 0∀i ∈ I, then

||x||2 =
∑
i∈I

|⟨x, ui⟩|2 = 0

and x = 0.

Theorem 3.14. Every Hilbert space has an orthonormal basis.

Proof. A maximal orthonormal set is complete, and therefore an orthonormal
basis.

Theorem 3.15. Let H be a Hilbert space. H is separable if and only if H has a
countable orthonormal basis, in which case every orthonormal basis is countable.

Proof. Separable to Countable Orthonormal Basis

Suppose that H is separable, then H has a countable orthonormal basis.

Proof. Let {xn}∞1 be a countable dense subset of H. Construct inductively a
linearly independent subset of {xn}∞1 , then apply the Gram-Schmidt Process
to obtain an orthonormal set {un}∞1 , then the span of {un}∞1 is dense in H.
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Let x ∈ H, then there exists {xn}∞1 such that xn → x with xn =
∑∞
k=1 ⟨xn, uk⟩uk.

For any ε, choose m and n such that

m∑
k=1

⟨x, uk⟩uk ≈
m∑
k=1

⟨xn, uk⟩uk ≈
∞∑
k=1

⟨xn, uk⟩uk = xn ≈ x

where each ≈ represents a distance of less than ε/4, then
∑m
k=1 ⟨x, uk⟩uk → x

as m→ ∞.

Countable Orthonormal Basis to Separable

If H has a countable orthonormal basis, then H is separable.

Proof. Let F ⊂ C be a countable dense subset, then the collection of finite
linear combinations of {xn}∞1 with F coefficients would be our countable dense
subset.

3.5 Differential Calculus

Definition 3.9 (Fréchet Differentiable). Let E,F be Banach/topological vector
spaces, and U ⊂ E, V ⊂ F be open sets. A function f : U → V is **Fréchet-
differentiable** at a point x ∈ U , if there exists a continuous linear map λ ∈
L(E,F ) and ψ such that

f(x+ y) = f(x) + λy + ψ(y)

where ψ is little-o of y/tangent to 0.

Theorem 3.16 (Fréchet Derivative). Let x ∈ E and f : U → V be differentiable
at x, then define the Fréchet derivative Df(x) to be the λ satisfying the above
condition. λ is uniquely determined by f and x.

Proof. Let λ1, λ2 ∈ L(E,F ) be continuous linear maps satisfying the desired
property. For any v ∈ E : ||v|| = 1, let t > 0 such that B(x, t) ⊂ U , then

f(x+ tv)− f(x) = λ1(tv) + o1(tv)

= λ2(tv) + o2(tv)

λ1(tv)− λ2(tv) = o2(tv)− o1(tv)

t(λ1v − λ2v) = o2(tv)− o1(tv)

(λ1 − λ2)v =
o2(tv)− o2(tv)

||tv||

Taking the limit on both sides yields that

lim
t→0

(λ1 − λ2)(v) = lim
t→0

o2(tv)− o2(tv)

||tv||
= 0

Therefore λ1v = λ2v for all unit vectors v, which extends to all elements of
E.
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Definition 3.10 (Second Derivative). Let X ,Y be Banach spaces, U ⊂ X be
open, and f : U → Y be a differentiable function, then

Df : U → L(X ,Y)

Since the space of bounded linear maps is complete, differentiating Df yields the
second derivative

D2f : U → L(X , L(X ,Y))

As maps in L(X , L(X ,Y)) are separately continuous (with respect to x inputs),
we identify L(X , L(X ,Y)) = L2(X ,Y) as the space of continuous bilinear maps.

Definition 3.11 (Higher Derivatives). Let p ∈ N, then define inductively the
p-th derivative

Dpf(x) = D(Dp−1f)(x)

with Dpf(x) ∈ Lp(X ,Y) is continuous and multilinear. If

Dkf : U → Lk(X ,Y)

exists and is continuous for each k ≤ p, then f ∈ Cp.

Theorem 3.17. Let {vk}n1 be fixed elements of X . If f is p times differentiable
on U , and let

g(x) = Dn−1f(x)(v2, · · · , vn)

then g is differentiable on U , and

Dg(x)(v) = Dpf(x)(v, · · · , vn)

Proof. Consider g as the composition between

Dn−1f : U → Ln−1(X ,Y) λ : Ln−1(X ,Y) → Y

where λ is the evaluation map at (v2, · · · , vn). This makes λ continuous and
linear, which allows differentiating the decomposition

D(λ ◦Dn−1f) = λ ◦Dnf

Therefore

Dg(x)(v) = (λ ◦Dnf)(x)(v) = (Dnf(x)v)(v2, · · · , vn)

Theorem 3.18. Let f : U → Y be p times differentiable and λ : Y → Z be a
bounded linear map. Then for any x ∈ U ,

Dp(λ ◦ f)(x) = λ ◦Dpf(x)
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Theorem 3.19 (The Second Derivative is Symmetric). Let U ⊂ X be open,
f : U → Y be twice differentiable with D2f being continuous. Then for each
x ∈ U , the bilinear map D2f(x) is symmetric for all v, w ∈ X .

Proof. Let r > 0 such that B(x, 2r) ⊂ U . Let v, w ∈ X such that ||v|| , ||w|| < r.
Denote

g(x) = f(x+ v)− f(x)

Then

f(x+ v + w)− f(x+ w)− f(x+ v) + f(x)

= g(x+ w)− g(x)

=

∫ 1

0

Dg(x+ tw)(w)dt

=

∫ 1

0

[Df(x+ v + tw)−Df(x+ tw)] (w)dt

=

∫ 1

0

∫ 1

0

D2f(x+ sv + tw) · (v)ds · (w)dt

by applying the mean value theorem twice. Let

ψ(sv, tw) = D2f(x+ sv + tw)−D2f(x)

then

g(x+ w)− g(x) =

∫ 1

0

∫ 1

0

D2f(x+ sv + tw)(v, w)dsdt

=

∫ 1

0

∫ 1

0

D2f(x)(v, w)dsdt

+

∫ 1

0

∫ 1

0

ψ(sv, tw)(v, w)dsdt

= D2f(x)(v, w) +

∫ 1

0

∫ 1

0

ψ(sv, tw)(v, w)dsdt︸ ︷︷ ︸
ϕ(v,w)

where
||ϕ(v, w)|| ≤ sup

s,t
||ϕ(sv, tw)|| · ||v|| · ||w||

Swapping the role of v and w in the above example, we can work with

gw(x) = f(x+ w)− f(x)

and

f(x+ v + w)− f(x+ w)− f(x+ v) + f(x)

= gw(x+ v)− gw(x)

= D2f(x)(w, v) + ϕw(v, w)
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where

||ϕw(v, w)|| ≤ sup
s,t

||ψw(sv, tw)|| · ||v|| · ||w||

The two separate ways of writing the same expression yields

D2f(x)(v, w)−D2f(x)(w, v) = ϕ(v, w)− ϕw(v, w)

where since D2 is continuous,

lim
(v,w)→0

ϕ(v, w) = lim
(v,w)→0

ϕw(v, w)

= D2f(x+ v + w)−D2f(x)

= 0

Meaning that D2f(x)(v, w)−D2f(x)(w, v) = 0.

Theorem 3.20 (Higher Derivatives are Symmetric). Let f ∈ Cp on U . Then
for each x ∈ U , the map Dpf(x) is symmetric.

Proof. With induction on p. Suppose that Dp−1f(x) is symmetric and let g =
Dp−2f , then

D2g(x)(v, w) = D2g(x)(w, v)

Since Dpf = D2Dp−2F ,

Dpf(x)(v1, · · · , vp) = (D2Dp−2f(x))(v1, v2) · (v3, · · · , vp)
= (D2Dp−2f(x))(v2, v1) · (v3, · · · , vp)
= Dpf(x)(v2, v1, · · · , vp)

we can swap the first two inputs to the function. By the inductive hypothesis,
we can also permute the last p− 1 inputs to the function.

As any permutation in Sp can be written as (12) · σ for some σ ∈ Sp−1, permu-
tations do not affect the value of Dpf(x).

Theorem 3.21. Let X ,Y be Banach spaces, then the map

L(X ,Y)×X (T, x) 7→ Tx

is bounded and bilinear. Let J = [a, b] be a closed interval and α : J → L(X ,Y)
be a continuous map, then we can integrate along the curve∫ b

a

α(t)dt ∈ L(X ,Y)

If α is differentiable, then dα
dt (t) ∈ L(X ,Y) as well.
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Theorem 3.22. Let α : J → L(X ,Y) be a continuous map and x ∈ X , then∫ b

a

α(t)(x)dt =

∫ b

a

α(t)dt · x

Proof. The map λ 7→ λx is linear and bounded. Therefore it can be taken out of
the integral.

Theorem 3.23 (Mean Value Theorem). Let X ,Y be Banach spaces, U ⊂ X
be open and x ∈ U . Let y ∈ X , and f : U → Y be a C1 map. If the line
{x+ ty : t ∈ [0, 1]} ⊂ U , then

f(x+ y)− f(x) =

∫ 1

0

Df(x+ ty)(y)dt =

∫ 1

0

Df(x+ ty)dt · y

Proof. Let g(t) = f(x + ty), then Dg(t) = Df(x + ty) ◦ y by the chain rule.
Since g is continuous on [0, 1], by the Fundamental Theorem of Calculus,

g(1)− g(0) =

∫ 1

0

Dg(t)dt

f(x+ y)− f(x) =

∫ 1

0

Df(x+ ty)(t)dt

=

∫ 1

0

Df(x+ ty)dt · y

Theorem 3.24. Let U ⊂ X be open and x, z ∈ U such that the line segment

L = {tx+ (1− t)z : t ∈ [0, 1]}

lies in U . If f ∈ C1, then

||f(z)− f(x)|| ≤ ||z − x|| · sup
v∈L

||Df(v)||

Proof. By the mean value theorem with y = z − x,

f(z)− f(x) =

∫ 1

0

Df(x+ t(z − x))dt · (z − x)

||f(z)− f(x)|| =
∣∣∣∣∣∣∣∣∫ 1

0

Df(x+ t(z − x)) · (z − x)dt

∣∣∣∣∣∣∣∣
≤
∫ 1

0

||Df(x+ t(z − x)) · (z − x)|| dt

≤
∫ 1

0

sup
t∈[0,1]

||Df(x+ t(z − x))|| · ||z − x|| dt

= sup
z∈L

||Df(z)|| · ||z − x||

where the supremum exists since f ∈ C1 and Df ∈ C0.
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Theorem 3.25. Let U ⊂ X be open and x, z, x0 ∈ U such that the line segment

L = {tx+ (1− t)z : t ∈ [0, 1]}

lies in U . Then

||f(z)− f(x)−Df(x0)(z − x)|| ≤ ||z − x|| sup
v∈L

||Df(v)−Df(x0)||

Proof.

f(z)− f(x)

=

∫ 1

0

Df(x+ t(z − x))(z − x)dt

=

∫ 1

0

[Df(x+ t(z − x))−Df(x0) +Df(x0)] (z − x)dt

= Df(x0)(z − x) +

∫ 1

0

[Df(x+ t(z − x))−Df(x0)] (z − x)dt

≤ Df(x0) + sup
z∈L

||Df(v)−Df(x0)|| · ||z − x||

3.6 Banach Algebra

Definition 3.12 (Banach Algebra). Let (A,×) be an algebra over C and || · || :
A → [0,∞) be a norm. (A,×, || · ||) is a Banach algebra if (A, || · ||) is a
Banach space and

||x× y|| ≤ ||x|| · ||y|| ∀x, y ∈ A

Definition 3.13 (Unital Banach Algebra). A Banach algebra A is unital if it
has a multiplicative identity.

Definition 3.14 (Invertible). Let A be a unital Banach algebra, then an element
x ∈ A is invertible if ∃x−1 ∈ A : xx−1 = x−1x = e.

Theorem 3.26 (Power Rule). Let A be a Banach algebra, then

Dxn(x0)(h) =

n∑
k=1

xk−1Dx(x0)(h)x
n−k

for all n ∈ N. Since the derivative Dx is constant, x 7→ xn is in C∞ for all
n ∈ N. *

Proof. For n = 1, x 7→ x has constant derivative I everywhere, so it is also in
C∞.
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Now suppose that xn is C∞ with

Dxn(x0)(h) =

n∑
k=1

xk−1
0 · h · xn−k0

then by the product rule,

Dxn+1(x0)(h) = D(x · xn)(x0)(h)
= Dx(x0)(h) · xn(x0) + x(x0) ·Dxn(x0)(h)

= h · x(n+1)−1
0 +

n∑
k=1

xk0 · h · xn−k0

= h · x(n+1)−1
0 +

n+1∑
k=2

xk−1
0 · h · x(n+1)−k

0

=

n+1∑
k=1

xk−1
0 · h · x(n+1)−k

0

Theorem 3.27. Let A be a unital Banach algebra. Then

1. If |λ| > ||x||, then λe − x is invertible where
∑
i∈N∪{0} λ

−n−ixi is the
inverse.

2. If x is invertible and ||y|| < ||x−1||−1, then x − y is invertible where
x−1

∑
i∈N∪{0}(yx

−1)i is the inverse.

3. If x is invertible and ||y|| < 1
2 ||x

−1||−1, then ||(x−y)−1−x−1|| < 2||x−1||2||y||.

4. The collection of invertible elements in A is open, and the mapping x 7→
x−1 is continuous on it.

Proof. Let λ ∈ C and x : ||x|| < |λ|, then y = λ−1x satisfies ||y|| < 1. We have

(e− y)−1 =
∑

i∈N∪{0}

yi

(e− y)−1 =
∑

i∈N∪{0}

λ−nxi

(λe− x)−1 =
∑

i∈N∪{0}

λ−n−1xi
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Now let y : ||y|| < ||x−1||−1, then

x− y = (e− yx−1)x ||yx−1|| < 1

(e− yx−1)−1 =
∑

i∈N∪{0}

(yx−1)i

(x− y)−1 = x−1
∑

i∈N∪{0}

(yx−1)i

Then let y : ||y|| < 1
2 ||x

−1||−1, and∣∣∣∣∣∣
∣∣∣∣∣∣x−1

∑
i∈N∪{0}

(yx−1)i − x−1

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣x−1

∑
i∈N+

(yx−1)i

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣x−1

∣∣∣∣ · ∣∣∣∣∣
∣∣∣∣∣∑
i∈N+

(yx−1)i

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣x−1

∣∣∣∣ · ∑
i∈N+

||yx−1||i

≤
∣∣∣∣x−1

∣∣∣∣ · ∑
i∈N+

||y||i ·
∣∣∣∣x−1

∣∣∣∣i
<
∣∣∣∣x−1

∣∣∣∣ · ||y|| · ||x||−1
∑
i∈N

1

2i
∣∣∣∣x−1

∣∣∣∣−i · ∣∣∣∣x−1
∣∣∣∣i

=
∣∣∣∣x−1

∣∣∣∣ · ||y|| · ||x||−1
∑
i∈N

1

2i

= 2
∣∣∣∣x−1

∣∣∣∣2 ||y||
Finally, let Ω ⊂ A be the collection of all invertible elements in A, and take
x ∈ Ω, and y : ||y|| < ||x−1||−1 ⇔ d(x, x− y) < ||x−1||−1. Then

B
(
x,
∣∣∣∣x−1

∣∣∣∣−1
)
⊆ Ω

For continuity, let ε > 0 and δ < 1
2ε
∣∣∣∣x−1

∣∣∣∣−2
, then

||y|| < 1

2
ε2
∣∣∣∣x−1

∣∣∣∣−1 ⇔ d(x, x− y) <
1

2
ε2
∣∣∣∣x−1

∣∣∣∣−1

d(x−1, (x− y)−1) < 2||x−1||2||y||

<
1

2
ε
∣∣∣∣x−1

∣∣∣∣−2 · 2||x−1||2

= ε
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Theorem 3.28 (Geometric Series). Let A be a unital Banach algebra and x
such that ||e− x|| < 1, then x is invertible with

x−1 =

∞∑
n=0

(e− x)n

Proof. Firstly, since ||e− x|| < 1, the series converges absolutely and has a limit.
Now,

(e− x) ·
∞∑
n=0

(e− x)n =

∞∑
n=0

(e− x)n − e

∞∑
n=0

(e− x)n · (e− x) =

∞∑
n=0

(e− x)n − e

we have
∑∞
n=0(e−x)n ·x = x ·

∑∞
n=0(e−x)n = e. Therefore x is invertible with

the given inverse.

Theorem 3.29. Let A be a unital Banach algebra and x be an invertible ele-

ment, then y is invertible for all y ∈ B(x,
∣∣∣∣x−1

∣∣∣∣−1
) with y−1 = (x−1y)−1x−1

Proof. If ||x− y|| <
∣∣∣∣x−1

∣∣∣∣−1
, then∣∣∣∣e− x−1y

∣∣∣∣ = ∣∣∣∣x−1(x− y)
∣∣∣∣ ≤ ∣∣∣∣x−1

∣∣∣∣ · ||x− y|| < 1

and x−1y is invertible. In which case,[
(x−1y)−1x−1

]
· y = e

and

(x−1y)(x−1y)−1 = e

y(x−1y)−1 = x

y ·
[
(x−1y)−1x−1

]
= e

giving the inverse of y.

Theorem 3.30 (Smoothness of the Inverse Near Identity). Let A be a unital
Banach algebra, then the inversion map

B(e, 1) → A x 7→ x−1 =

∞∑
n=0

(e− x)n

is C∞.



62 CHAPTER 3. FUNCTIONAL ANALYSIS

Proof. First note that the unit is not isolated, as for any ε > 0, ||e− (1 + ε)e|| =
ε.

Since the coefficients on the terms is 1 for all n, the series has a radius of
convergence of 1, and is therefore C∞ on B(e, 1).

Theorem 3.31 (Smoothness of the Inverse). Let A be a unital Banach algebra,
and y be an invertible element, then the inversion map is C∞ at y.

Proof. First note that no invertible element is isolated, as for any y invertible
(so non-zero) and ε > 0, z = y · (1+ε/ ||y||) satisfies ||y − z|| = ||y · ε/ ||y|||| = ε.

Let z ∈ A with ||y − z|| <
∣∣∣∣y−1

∣∣∣∣−1
, then

∣∣∣∣e− y−1z
∣∣∣∣ < 1 and z−1 = (y−1z)−1 ·

y−1. We can express the inversion map as T ◦ I ◦ S where

S : B(y,
∣∣∣∣y−1

∣∣∣∣−1
) → B(e, 1) x 7→ y−1x

I : B(e, 1) → A x 7→ x−1

T : A → A x 7→ xy−1

Since the first and third map are linear, they are C∞. As the inversion map is

a composition of C∞ functions, it is C∞ on B(y,
∣∣∣∣y−1

∣∣∣∣−1
).

3.7 Inverse Function Theorem

Theorem 3.32 (Inverse Function Theorem (Simplified)). Let X be a Banach
space, U ⊂ X be an open set containing 0 and f : U → X be a Cp map with
p ≥ 1. Suppose that Df(0) = I is the identity and f(0) = 0, then f is a local
Cp-isomorphism at 0.

Proof. Neighbourhood

There exists r > 0 such that Df(x) is invertible for all x ∈ B(0, r). Moreover,
if g(x) = x− f(x), then g(B(0, r)) ⊂ B(0, r/2).

Proof. Since Dg(0) = 0 and f ∈ Cp, by continuity, there exists r > 0 such that

||Dg(x)|| < 1

2

||Df(x)− I|| < 1

2

for all x with ||x|| ≤ r. Since the space of isomorphisms is open, and ||Df(x)− I|| <∣∣∣∣I−1
∣∣∣∣−1

, Df(x) is invertible for all x with ||x|| < r.

For any x ∈ B(0, r), by the mean value theorem,

||g(x)|| = ||g(x)− g(0)|| ≤ ||x|| · sup
t∈[0,1]

||Dg(tx)|| ≤ 1

2
||x||
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we have x ∈ B(0, r/2).

Contraction

The map g : B(0, r) → B(0, r) is a contractor.

Proof. Let x1, x2 ∈ B(0, r), then by the mean value theorem again

||g(x1)− g(x2)|| ≤ ||x1 − x2|| · sup
y∈B(0,r)

||Dg(y)|| < 1

2
||x1 − x2||

Inverse

For any y ∈ B(0, r/2), there exists a unique x ∈ B(0, r) such that f(x) = y.

Proof (see Fixed Point Problem). Let y ∈ B(0, r/2) and gy(x) = x − f(x) + y,
then f(x) = y if and only if gy(x) = x. If ||y|| ≤ r/2 and ||x|| ≤ r,

||gy(x)|| = ||g(x) + y|| ≤ 1

2
||x||+ ||y|| ≤ r

and gy maps B(0, r) to B(0, r). Now for any x1, x2 ∈ B(0, r),

||gy(x1)− gy(x2)|| = ||g(x1)− g(x2)||

Since g is a contractor, so is gy. By the Banach fixed-point theorem, gy has a

unique fixed point x ∈ B(0, r), which is the solution to f(x) = y.

Continuity

Let ϕ : B(0, r/2) → B(0, r) be the inverse of f , then ϕ is continuous.

Proof. Let x1, x2 ∈ B(0, r), then

x1 − x2 = f(x1) + g(x1)− f(x2)− g(x2)

and

||x1 − x2|| ≤ ||f(x1)− f(x2)||+ ||g(x1)− g(x2)||
≤ 2 ||f(x1)− f(x2)||

So for any y1, y2 ∈ B(0, r/2),

||ϕ(y1)− ϕ(y2)|| ≤ 2 ||y1 − y2||

and ϕ is continuous.

Differentiability

Let ϕ : B(0, r/2) → B(0, r) be the inverse of f , then ϕ is differentiable with
Dϕ(x) = Df(x)−1.
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Proof. Let x1, x2 ∈ B(0, r/2), and y1 = f(x1), y2 = f(x2), then∣∣∣∣ϕ(y1)− ϕ(y2)−Df(x2)
−1(y1 − y2)

∣∣∣∣
=
∣∣∣∣x1 − x2 −Df(x2)

−1(y1 − y2)
∣∣∣∣

≤ ||Df(x2)|| · ||Df(x2)(x1 − x2)− (y1 − y2)||

By the differentiability of f ,

f(x1) = f(x2) +Df(x2)(x1 − x2) + o(x1 − x2)

f(x1)− f(x2) = Df(x2)(x1 − x2) + o(x1 − x2)

so

||Df(x2)|| · ||Df(x2)(x1 − x2)− (y1 − y2)||
= ||Df(x2)|| · ||o(x1 − x2)||

is little-o of (x1 − x2). Since as shown before,

||x1 − x2|| ≤ 2 ||y1 − y2||

meaning that

||o(x1 − x2)||
||y1 − y2||

=
||o(x1 − x2)||
||x1 − x2||

· ||x1 − x2||
||y1 − y2||

≤ 2
||o(x1 − x2)||
||x1 − x2||

and the difference is little-o of (y1 − y2) as well.

Smoothness

Let ϕ : B(0, r/2) → B(0, r) be the inverse of f , then ϕ is of class Cp.

Proof. Let ψ : Laut(X ) → Laut(X ) with x 7→ x−1 be the inversion map, then
since Dϕ = ψ ◦Df and ψ ∈ C∞ (see Smoothness of the Inverse), Dϕ ∈ Cp.

Theorem 3.33 (Inverse Function Theorem). Let X be a Banach space, U ⊂ X
be an open set and f : U → X be of class Cp with p ≥ 1. If there exists x0 ∈ U
such that Df(x0) ∈ Laut(X ) is invertible, then f is a local Cp-isomorphism.

Proof. Let g(x) = Df(x0)
−1 ◦ f(x + x0), then g : (U − x0) → X is of class Cp

with Dg(0) = I. By the simplified version, there exists V,W ∈ N (x0) such that
g : V →W is a Cp-isomorphism.

Since f(x) = Df(x0)◦g(x−x0), f : (V +x0) → Df(x0)(W ) is a Cp-isomorphism.



Chapter 4

Manifold Theory

4.1 Vector Bundles

Definition 4.1 (Total Space and Projection). Let X be an E-manifold of class
Cp. If at each point p ∈ X the set Wx is toplinearly isomorphic to a Banach
space F , define

W =
⊔
x∈X

Wx

as their set-theoretic coproduct, and let π :W → X such that the fibre π−1(x) =
Wx. Then W forms the total space on the canonical projection π, and we
place a manifold structure on it through the construction of a vector bundle.

Alternatively, if W starts as a manifold, then π : W → X can be taken as a
morphism instead, and each π−1(p) can be given the same Banach space struc-
ture.

Definition 4.2 (Trivialising Maps). Let U be an open set in X, and let

τ : π−1(U) → U × F

If τ is a Cp-isomorphism commuting with the projection on U ,

π−1(U)
τ−−−−→ U × F

π1−−−−→ U

where π = τ ◦ π1 on π−1(U), then τ is a trivialising map for π.

In particular, by fixing p ∈ X, the trivialising map transports the Banach struc-
ture of F onto each fibre

π−1(p)
τ−−−−→ p× F

π2−−−−→ F

through the map τp = π1 ◦ τ .

65
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Definition 4.3 (VB-Equivalence). Let (U, σ) and (V, τ) be two trivialising maps
with intersecting domains. The two maps are compatible (VB-equivalent) if
for any p ∈ U ∩ V ,

σp ◦ τ−1
p : F → F

the transition map is a toplinear isomorphism, and the map

U ∩ V → Laut(F ) p→ (σ ◦ τ−1)p

is a Cp morphism.

If W starts as a manifold, then each trivialising map can transport the Ba-
nach structure on F to π−1(p). The condition on the transition map ensures
that the same Banach structure is given by different trivialising maps, which
allows π−1(p) to be identified as Fp ∼= F . The transition map condition can be
reformulated as

σp : Fp → F τp : Fp → F

both being toplinear isomorphisms.

If F is finite-dimensional, then the morphism condition is implied by the tran-
sition condition.

Definition 4.4 (Trivialising Covering). Let {Ui}i∈I be an open cover of X. A
family {(Ui, τi)}i∈I of mutually compatible trivialising maps forms a trivialis-
ing covering.

Definition 4.5 (Vector Bundle). Let {Ui}i∈I be an open cover of X and {(Ui, τi)}i∈I
be a trivialising covering. The maximal trivialising covering that is VB-equivalent
to it forms the vector bundle structure on π.

Definition 4.6 (Manifold Structure on a Bundle). Let X be an E-manifold of
class Cp, π : W → X a mapping, and F be a Banach space. Let {Ui}i∈I be an
open cover of X and for each i ∈ I, let

τi : π
−1(Ui) → Ui × F

such that for each pair i, j, τi and τj are VB-equivalent. Then there exists a
unique E × F -manifold structure on W such that:

1. π is a morphism and a submersion.

2. Each τi is an isomorphism, making π into a vector bundle.

3. {(Ui, τi)}i∈I is a trivialising covering.

Proof. Let {(Vj , ψj)} be an atlas on X. Let i ∈ I and j ∈ J . Let

Ũi = π−1(Ui) Ũ ji = π−1(Ui ∩ Vj)

Define the bundle chart (Ũ ji , φ
j
i ) as the composition

Ũ ji
τi−−−−→ Ui × F

ψj×Id−−−−→ E × F
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where φji = (ψj × Id) ◦ τi.
By the VB-equivalent condition, the transition map between the trivialisations

τj ◦ τ−1
i : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F

is a Cp-isomorphism.

So the chart transition map is also a Cp-isomorphism, each τi is an isomorphism,
and the family is a trivialising covering. As π at each point is the composition
of two morphisms, π itself is also a morphism, which splits E ×F as E × 0 and
0× F , making it a submersion.

Definition 4.7. Let X, Y be a manifold, π : W → X be a vector bundle with
fibre F , and f : Y → W be a morphism. Let (U,ψ) ∈ X be a chart, (U, τ) be

a local trivialisation, and (V, ϕ) ∈ Y be a chart such that f(V ) ⊂ π−1(U) = Ũ ,
then

V
f−−−−→ Ũ

τ−−−−→ U × F

π

y y
U

ψ−−−−→ Û

where the composite τ ◦ f : V → U × F has two components,

fU : V → U fF : V → F

where fF is the vector component of f in the bundle chart U × F over U .
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Chapter 5

Tricks

Special thanks to Anson Li for providing a summary of the following recurrent
techniques.

5.1 Upper and Lower Approximations

Definition 5.1 (Upper and Lower Approximations). Let Ω be a set, Σ ⊆ Ω be
a subset where a notion of measure I : Σ → [0,∞] is defined.

Let x ∈ Ω and suppose that there are measurable collections Σx,Σx ⊆ Σ that
approximate x from below and above, respectively. Then the supremum and
infimum of the lower and upper collections

I(x) = sup
ϕ∈Σx

I(ϕ) ≤ inf
ϕ∈Σx

I(ϕ) = I(x)

are the lower and upper approximations of I(x). Generally, If

I(x) = I(x) or I(x) = I(x) ∀x ∈ Σ

the approximations agree with I, then I and/or I extend I.

The idea of lower and upper approximations is commonly used in analysis and
measure theory. In particular, the Riemann Integral (Darboux’s characterisa-
tion), the outer measure, Carathéodory’s Theorem, Carathéodory’s Extension
Theorem, Integral for non-simple functions, the monotone convergence theorem
and Fatou’s Lemma all make use of this concept.

Theorem 5.1. Let x, y ∈ Ω, then Σx ⊆ Σy ⇒ I(x) ≤ I(y), and Σx ⊆ Σy ⇒
I(x) ≥ I(y).

Theorem 5.2. Let x ∈ Ω and c ∈ [0,∞]. If I(ϕ) ≤ c∀ϕ ∈ Σx, then I(x) ≤ c.
If I(ϕ) ≥ c∀ϕ ∈ Σx, then I ≥ c.
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Theorem 5.3 (Controlling the Lower Limit). Let x ∈ Ω, {xn}∞1 , and {ϕn}∞1 ⊆
Σx be a supporting sequence such that I(ϕn) ↗ I(x). If for any n ∈ N, ∃ψn ∈
Σxn

such that I(ϕn) ≤ I(ψn) eventually, then

I(x) = lim
n→∞

I(ϕn) ≤ lim inf
n→∞

I(ψn) ≤ lim inf I(xn)

Proof. Since I(ϕn) ≤ I(ψn) ≤ I(xn) eventually, we have

lim inf
n→∞

I(ϕn) ≤ lim inf
n→∞

I(ψn) ≤ lim inf
n→∞

I(xn)

by the order limit theorem. Since I(ψn) ↗ I(x),

I(x) = lim
n→∞

I(ϕn) ≤ lim inf
n→∞

I(ψn) ≤ lim inf I(xn)

5.2 Method of Successive Approximations

Definition 5.2 (Reverse Lipschitz Criterion). Let X be a Banach space. For
any ρ ≥ 0 denote

Mρ = {x ∈ X : ||x|| ≤ ρ}
A collection Σ ⊂ X satisfies the reverse Lipschitz criterion if there exists γ ∈
(0, 1) and C > 0 such that for any x ∈ Mε, there exists an approximating
element ϕ ∈ Σ with ||x− ϕ|| ≤ γε.

The precision of the approximation scales with the norm of the target, and the
error must be in a way, consistently less than the norm of the target.

Theorem 5.4 (Method of Successive Approximations (Same Space)). Let X be
a Banach space, and Σ ⊂ X be a set satisfying the reverse Lipschitz criterion,
then for all x ̸= 0, there exists a sequence {ϕn}∞1 ⊂ Σ such that

∑∞
n=1 ϕn = x.

Proof. Let x0 = x. For n ∈ N0, choose ϕn+1 ∈ Σ such that ||xn − ϕn+1|| ≤
γ ||xn||, and take the remainder xn+1 = xn − ϕn+1.

Leveraging the completeness of X, if we can control the norms of each ϕn, we
can force the sum to converge. Since

||ϕn+1|| ≤ ||ϕn+1 − xn||+ ||xn|| ≤ (1 + γ) ||xn|| < 2 ||xn||

and
||ϕn+1|| ≤ 2 ||xn|| ≤ 2γ ||xn−1|| ≤ · · · ≤ 2γn ||x0|| ∀n ∈ N0

from induction, with γ ∈ (0, 1),
∑
n∈N ||ϕn|| <∞ and

∑∞
n=1 ϕn converges.

Now to bound the remainder, since ||xn|| ≤ γn ||x0||,∣∣∣∣∣
∣∣∣∣∣x0 −

∞∑
n=1

ϕn

∣∣∣∣∣
∣∣∣∣∣ = lim

n→∞

∣∣∣∣∣
∣∣∣∣∣x−

n∑
n=1

ϕn

∣∣∣∣∣
∣∣∣∣∣ ≤ lim

n→∞
γn ||x0|| = 0

yielding x =
∑∞
n=1 ϕn.
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Theorem 5.5 (Method of Successive Approximations (Two Spaces)). Let X
and Y be Banach spaces and T : Y → X be a continuous linear map.

Let Σ ⊆ Y . If there exists C > 0, γ ∈ (0, 1) such that for any x ∈ X, ||x|| ≤ ε,
there exists ϕ ∈ Σ such that

||x− T (ϕ)||X ≤ γε ||ϕ||Y ≤ Cε

Then for any x ∈ X,x ̸= 0, there exists {ϕn}∞1 such that x = T (
∑∞
n=1 ϕn).

Proof. Using a similar inductive construction: Let x0 = x. For any n ∈ N0,
choose ϕn+1 ∈ Σ such that ||ϕn+1|| ≤ C ||xn|| and ||xn − T (ϕn+1)|| ≤ γ ||xn||,
and take xn+1 = xn − ϕn.

Since
||ϕn+1|| ≤ C ||xn|| ≤ γ ||xn−1|| ≤ · · · ≤ γn ||x0|| ∀n ∈ N0

with γ ∈ (0, 1),
∑∞
n=1 ||ϕn|| <∞ and

∑∞
n=1 ϕn converges.

As T is linear and continuous, with ||xn|| ≤ γn ||x0|| we obtain∣∣∣∣∣
∣∣∣∣∣x0 − T

( ∞∑
n=1

ϕn

)∣∣∣∣∣
∣∣∣∣∣ = lim

n→∞

∣∣∣∣∣
∣∣∣∣∣x0 − T

(
n∑
k=1

ϕk

)∣∣∣∣∣
∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣
∣∣∣∣∣x0 −

n∑
k=1

ϕk

∣∣∣∣∣
∣∣∣∣∣

≤ lim
n→∞

||xn|| = lim
n→∞

γn ||x0||

= 0

5.3 Fixed Point Problem

Theorem 5.6. Let X be a Banach space and F : X → X be any mapping.
Suppose that Id+ F is a contraction, then F is invertible.

Proof. Let y ∈ F , and take gy(x) = (Id+F )(x)−y, then F (x) = y if and only if
gy(x) = x, and gy is also a contraction. By the Banach fixed-point theorem, gy
has a unique fixed point. Therefore there exists x ∈ E such that y = F (x).

Theorem 5.7. Let X be a Banach space, F : X → X be any mapping. Sup-
pose that there exists a homeomorphism H : X → X such that Id + HF is a
contraction, then F is invertible.

Proof. Since HF is invertible and H is a homeomorphism, F is invertible as
well.
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